Radon Hazard In Permafrost Conditions: Current State Of Research

In this paper, we review both practical and theoretical assessments for evaluating radon geohazards from permafrost landforms in northern environments (>60º N). Here, we show that polar amplification (i.e. climate change) leads to the development of thawing permafrost, ground subsidence, and thaw...

Full description

Bibliographic Details
Published in:GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
Main Authors: Andrey Puchkov V., Evgeny Yakovlev Yu., Nicholas Hasson, Guilherme A. N. Sobrinho, Yuliana Tsykareva V., Alexey Tyshov S., Pavel Lapikov I., Ekaterina Ushakova V.
Other Authors: The work was supported by the Russian Science Foundation grant No. 20-77-10057 «Diagnostics of permafrost degradation based on isotope tracers (234U/238U, δ18O+δ2H, 292 δ13C+14C) and by Russian Foundation for Basic Research grant No. 20-35-70060 «Investigations of the conditions for increased radon emanation in the sedimentary cover of areas of kimberlite magmatism (on example the Arkhangelsk diamondiferous province)».
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2021
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/1890
https://doi.org/10.24057/2071-9388-2021-037
id ftjges:oai:oai.gesj.elpub.ru:article/1890
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic Radon hazard
radiation safety
permafrost;Arctic
climate warming
radon-hazardous territory
natural radioactivity
uranium ore
legislation
measurement method
spellingShingle Radon hazard
radiation safety
permafrost;Arctic
climate warming
radon-hazardous territory
natural radioactivity
uranium ore
legislation
measurement method
Andrey Puchkov V.
Evgeny Yakovlev Yu.
Nicholas Hasson
Guilherme A. N. Sobrinho
Yuliana Tsykareva V.
Alexey Tyshov S.
Pavel Lapikov I.
Ekaterina Ushakova V.
Radon Hazard In Permafrost Conditions: Current State Of Research
topic_facet Radon hazard
radiation safety
permafrost;Arctic
climate warming
radon-hazardous territory
natural radioactivity
uranium ore
legislation
measurement method
description In this paper, we review both practical and theoretical assessments for evaluating radon geohazards from permafrost landforms in northern environments (>60º N). Here, we show that polar amplification (i.e. climate change) leads to the development of thawing permafrost, ground subsidence, and thawed conduits (i.e. Taliks), which allow radon migration from the subsurface to near surface environment. Based on these survey results, we conjecture that abruptly thawing permafrost soils will allow radon migration to the near surface, and likely impacting human settlements located here. We analyze potential geohazards associated with elevated ground concentrations of natural radionuclides. From these results, we apply the main existing legislation governing the control of radon parameters in the design, construction and use of buildings, as well as existing technologies for assessing the radon hazard. We found that at present, these laws do not consider our findings, namely, that increasing supply of radon to the surface during thawing of permafrost will enhance radon exposure, thereby, changing prior assumptions from which the initial legislation was determined. Hence, the legislation will likely need to respond and reconsider risk assessments of public health in relation to radon exposure. We discuss the prospects for developing radon geohazard monitoring, methodical approaches, and share recommendations based on the current state of research in permafrost effected environments.
author2 The work was supported by the Russian Science Foundation grant No. 20-77-10057 «Diagnostics of permafrost degradation based on isotope tracers (234U/238U, δ18O+δ2H, 292 δ13C+14C) and by Russian Foundation for Basic Research grant No. 20-35-70060 «Investigations of the conditions for increased radon emanation in the sedimentary cover of areas of kimberlite magmatism (on example the Arkhangelsk diamondiferous province)».
format Article in Journal/Newspaper
author Andrey Puchkov V.
Evgeny Yakovlev Yu.
Nicholas Hasson
Guilherme A. N. Sobrinho
Yuliana Tsykareva V.
Alexey Tyshov S.
Pavel Lapikov I.
Ekaterina Ushakova V.
author_facet Andrey Puchkov V.
Evgeny Yakovlev Yu.
Nicholas Hasson
Guilherme A. N. Sobrinho
Yuliana Tsykareva V.
Alexey Tyshov S.
Pavel Lapikov I.
Ekaterina Ushakova V.
author_sort Andrey Puchkov V.
title Radon Hazard In Permafrost Conditions: Current State Of Research
title_short Radon Hazard In Permafrost Conditions: Current State Of Research
title_full Radon Hazard In Permafrost Conditions: Current State Of Research
title_fullStr Radon Hazard In Permafrost Conditions: Current State Of Research
title_full_unstemmed Radon Hazard In Permafrost Conditions: Current State Of Research
title_sort radon hazard in permafrost conditions: current state of research
publisher Russian Geographical Society
publishDate 2021
url https://ges.rgo.ru/jour/article/view/1890
https://doi.org/10.24057/2071-9388-2021-037
geographic Arctic
geographic_facet Arctic
genre Arctic
Arctic
Climate change
permafrost
Polar Science
Polar Science
The Cryosphere
genre_facet Arctic
Arctic
Climate change
permafrost
Polar Science
Polar Science
The Cryosphere
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 14, No 4 (2021); 93-104
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/1890/590
Adopted I.P.C.C. (2014). Climate Change 2014 Synthesis Report. IPCC: Geneva, Szwitzerland.
Al-Ahmady K.K., & Hintenlang D.E. (1994). Assessment of temperature-driven pressure differences with regard to radon entry and indoor radon concentration. AARST. Atlantic City: The American Association of Radon Scientists and Technologists.
Arvela H. (1995). Seasonal variation in radon concentration of 3000 dwellings with model comparisons. Radiation Protection Dosimetry, 59(1), 33-42, DOI:10.1093/oxfordjournals.rpd.a082634.
Astakhov N.E., Bartanova S.V., Tubanov C.A. (2015). Radon anomalies of some break zones in buryatia as the factor of radiation risk. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences, 17, 5-1 (in Russian with English summary).
Bakaeva N., Kalaydo A. (2016). About the radon transport mechanisms into the buildings. Construction and reconstruction, (5), 51-59, (in Russian with English summary).
Banerjee K.S., Basu A., Guin R., & Sengupta D. (2011). Radon (222Rn) level variations on a regional scale from the Singhbhum Shear Zone, India: A comparative evaluation between influence of basement U-activity and porosity. Radiation Physics and Chemistry, 80(5), 614-619, DOI:10.1016/j.radphyschem.2010.12.015.
Baskaran M. (2016). Radon: A tracer for geological, geophysical and geochemical studies (Vol. 367). Basel: Springer, DOI:10.1007/978-3-319-21329-3.
Berezina E.V., & Elansky N.F. (2009). 222 Rn concentrations in the atmospheric surface layer over continental Russia from observations in TROICA experiments. Izvestiya, Atmospheric and Oceanic Physics, 45(6), 757-769 (in Russian with English summary), DOI:10.1134/S0001433809060097.
Berezina E.V., Elansky N.F., Moiseenko K.B., Safronov A.N., Skorokhod A.I., Lavrova O.V., . & Shumsky R.A. (2014). Estimation of biogenic CH4 and CO2 emissions and dry deposition of O3 using 222 Rn measurements in TROICA expeditions. Izvestiya, Atmospheric and Oceanic Physics, 50(6), 583-594 (in Russian with English summary), DOI:10.1134/S000143381406005X.
Biskaborn B.K., Smith S.L., Noetzli J., Matthes H., Vieira G., Streletskiy D. A., . & Lantui H. (2019). Permafrost is warming at a global scale. Nature communications, 10(1), 1-11, DOI:10.1038/s41467-018-08240-4.
Blonsky A.V., Mitrushkin D.A., & Savenkov E.B. (2017). Simulation of flows in a discrete crack system: computational algorithms. Preprints of the Institute of applied mathematics. M. V. Keldysh RAS, (0), 66-30, (in Russian with English summary), DOI:10.20948/prepr-2017-66.
Bridge N.J., Banerjee N.R., Finnigan C.S., Carpenter R., & Ward J. (2009, December). The Lac Cinquante Uranium Deposit, Nunavut, Canada. In AGU Fall Meeting Abstracts, 2009, V33D-2065.
Brown J., Ferrians Jr.O.J., Heginbottom J.A., & Melnikov E.S. (1997). Circum-Arctic map of permafrost and ground-ice conditions, Reston, VA: US Geological Survey, 45, DOI:10.3133/CP45.
Buldovicz S.N., Khilimonyuk V.Z., Bychkov A.Y., Ospennikov E.N., Vorobyev S.A., Gunar A.Y., . & Amanzhurov R.M. (2018). Cryovolcanism on the earth: Origin of a spectacular crater in the Yamal Peninsula (Russia). Scientific reports, 8(1), 1-6.
Chen J. (2009). A preliminary design of a radon potential map for Canada: a multi-tier approach. Environmental Earth Sciences, 59(4), 775-782, DOI:10.1007/s12665-009-0073-x.
Chi G., Haid T., Quirt D., Fayek M., Blamey N., & Chu H. (2017). Petrography, fluid inclusion analysis, and geochronology of the End uranium deposit, Kiggavik, Nunavut, Canada. Mineralium Deposita, 52(2), 211-232, DOI:10.1007/s00126-016-0657-9.
Chuvilin E.M., Grebenkin S.I., & Zhmaev M.V. (2018). Influence of hydrate and ice formation on the gas permeability of sandy rocks. Vesti gas science, 3(35), (in Russian with English summary).
Ciotoli G., Voltaggio M., Tuccimei P., Soligo M., Pasculli A., Beaubien S.E., & Bigi S. (2017). Geographically weighted regression and geostatistical techniques to construct the geogenic radon potential map of the Lazio region: A methodological proposal for the European Atlas of Natural Radiation. Journal of environmental radioactivity, 166, 355-375, 10.1016/j.jenvrad.2016.05.010.
Clulow F.V., Davé N.K., Lim T.P., & Avadhanula R. (1998). Radionuclides (lead-210, polonium-210, thorium-230, and-232) and thorium and uranium in water, sediments, and fish from lakes near the city of Elliot Lake, Ontario, Canada. Environmental Pollution, 99(2), 199-213., DOI:10.1016/S0269-7491(97)00187-5.
Coletti C., Brattich E., Cinelli G., Cultrone G., Maritan L., Mazzoli C., . & Sassi R. (2020). Radionuclide concentration and radon exhalation in new mix design of bricks produced reusing NORM by-products: The influence of mineralogy and texture. Construction and Building Materials, 260, 119820, DOI:10.1016/j.conbuildmat.2020.119820.
Council Directive 2013/59/Euratom (05.12.2013)
Daraktchieva Z., Wasikiewicz J.M., Howarth C.B., & Miller C.A. (2021). Study of baseline radon levels in the context of a shale gas development. Science of The Total Environment, 753, 141952, DOI:10.1016/j.scitotenv.2020.141952.
Doloisio N., & Vanderlinden J.P. (2020). The perception of permafrost thaw in the Sakha Republic (Russia): Narratives, culture and risk in the face of climate change. Polar Science, 26, 100589, DOI:10.1016/j.polar.2020.100589.
Domingos F., & Pereira A. (2018). Implications of alteration processes on radon emanation, radon production rate and W-Sn exploration in the Panasqueira ore district. Science of The Total Environment, 622, 825-840, DOI:10.1016/j.scitotenv.2017.12.028.
Dushin V.A., Kuznetsov V.I., & Grigoriev V.V. (1997). Assessment of the prospects and conditions for the localization of new and unconventional types of mineral raw materials in the north of the Urals. In Polar Ural-new mineral resource base of Russia (proceedings of the 1st Polar-Ural scientific and practical conference). Tyumen-Salekhard, 26. (in Russian).
Eakin M., Brownlee S.J., Baskaran M., & Barbero L. (2016). Mechanisms of radon loss from zircon: microstructural controls on emanation and diffusion. Geochimica et Cosmochimica Acta, 184, 212-226, DOI:10.1016/j.gca.2016.04.024.
Eksorb.com (2016). NPP «EXORB» LLC. [online] Available at: https://eksorb.com/radon/ [Accessed 20 Mar. 2021].
Evangelista H., & Pereira E. B. (2002). Radon flux at king George island, Antarctic peninsula. Journal of environmental radioactivity, 61(3), 283-304, DOI:10.1016/S0265-931X(01)00137-0.
Federal Law as of 09.01.1996 No. 3-FZ «About Radiation Safety of the Public», Russia.
Federal Law as of 30.12.2009 No. 384-FZ «Technical Regulations for Safety of Buildings and Structures», Russia.
Feng S., Wang H., Cui Y., Ye Y., Liu Y., Li X., . & Yang R. (2020). Fractal discrete fracture network model for the analysis of radon migration in fractured media. Computers and Geotechnics, 128, 103810, DOI:10.1016/j.compgeo.2020.103810.
Giustini F., Ciotoli G., Rinaldini A., Ruggiero L., & Voltaggio M. (2019). Mapping the geogenic radon potential and radon risk by using Empirical Bayesian Kriging regression: A case study from a volcanic area of central Italy. Science of the Total Environment, 661, 449-464, DOI:10.1016/j.scitotenv.2019.01.146.
Glover P.W.J. (2006). Increased domestic radon exposure caused by permafrost thawing due to global climate change, EGU General Assembly, Vienna, Austria, 2-7 April. EGU06-A-01439.
Glover P.W., & Blouin M. (2007). Modelling increased soil radon emanation caused by instantaneous and gradual permafrost thawing due to global climate warming.
Hassan N.M., Hosoda M., Ishikawa T., Sorimachi A., Sahoo S.K., Tokonami S., & Fukushi M. (2009). Radon migration process and its influence factors; review. Japanese Journal of Health Physics, 44(2), 218-231, DOI:10.5453/jhps.44.218.
Heslop J.K., Winkel M., Walter Anthony K.M., Spencer R.G.M., Podgorski D.C., Zito P., . & Liebner S. (2019). Increasing organic carbon biolability with depth in yedoma permafrost: ramifications for future climate change. Journal of Geophysical Research: Biogeosciences, 124(7), 2021-2038, DOI:10.1029/2018JG004712.
Hoekstra P. (1978). Electromagnetic methods for mapping shallow permafrost. Geophysics, 43(4), 681-874, DOI:10.1190/1.1440853.
IAEA (2013). Measurement and Calculation of Radon Releases from NORM Residues. Technical Reports Series, 474. IAEA, Austria.
Ji M., Kong W., Liang C., Zhou T., Jia H., & Dong X. (2020). Permafrost thawing exhibits a greater influence on bacterial richness and community structure than permafrost age in Arctic permafrost soils. The Cryosphere, 14(11), 3907-3916, DOI:10.5194/tc-14-3907-2020.
Kawabata K., Sato T., Takahashi H. A., Tsunomori F., Hosono T., Takahashi M., & Kitamura Y. (2020). Changes in groundwater radon concentrations caused by the 2016 Kumamoto earthquake. Journal of Hydrology, 584, 124712, DOI:10.1016/j.jhydrol.2020.124712.
Klimshin A.V., Kozlova I.A., Rybakov E.N., Lukovskoy M.Yu. (2010). Effect of freezing the surface layer of soil on the radon transport. Vestnik Kamchatskoy regional’noy assotsiatsii «Uchebno-nauchnyy tsentr». Seriya: Nauki o Zemle, 16(2), 146-151 (in Russian with English summary).
Koptev D.P. (2020). Norilsk spill: lessons and consequences. Drilling and Oil, (7-8), 3-9. (in Russian with English summary).
Kropat G., Bochud F., Murith C., Palacios M., & Baechler S. (2017). Modeling of geogenic radon in Switzerland based on ordered logistic regression. Journal of environmental radioactivity, 166, 376-381, DOI:10.1016/j.jenvrad.2016.06.007.
Krupp K., Baskaran M., & Brownlee S.J. (2017). Radon emanation coefficients of several minerals: How they vary with physical and mineralogical properties. American Mineralogist: Journal of Earth and Planetary Materials, 102(7), 1375-1383, DOI:10.2138/am-2017-6017.
Kuo T., & Tsunomori F. (2014). Estimation of fracture porosity using radon as a tracer. Journal of Petroleum Science and Engineering, 122, 700-704, DOI:10.1016/j.petrol.2014.09.012.
Leonard L.J., Mazzotti S., Cassidy J.C., Rogers G., & Halchuk S. (2010). Seismic hazard in western canada from global positioning system strain rate data. Proceedings of the 9th U.S. National and 10th Canadian Conference on Earthquake Engineering Compte Rendu de la 9ième Conférence Nationale Américaine et 10ième Conférence Canadienne de Génie Parasismique July 25-29, 753, 1-10.
Li Y., Tan W., Tan K., Liu Z., Fang Q., Lv J., . & Guo Y. (2018). The effect of laterite density on radon diffusion behavior. Applied Radiation and Isotopes, 132, 164-169, DOI:10.1016/j.apradiso.2017.12.001.
Liu L., Zhao D., Wei J., Zhuang Q., Gao X., Zhu Y., . & Zheng D. (2021). Permafrost sensitivity to global warming of 1.5° C and 2° C in the Northern Hemisphere. Environmental Research Letters, 16(3), 034038, DOI:10.1088/1748-9326/abd6a8.
Livshits M., Gulabyants L. (2017). The mathematical solution of the boundary problem of radon transfer in the system «soil – atmosphere – building». Fundamental, exploratory and applied research of the russian academy of natural sciences on scientific support for the development of architecture, urban planning and the construction industry of the russian federation in 2016, 218-226. (in Russian with English summary).
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2021-037
https://doi.org/10.1093/oxfordjournals.rpd.a082634
https://doi.org/10.1007/978-3-319-21329-3
https://doi.org/10.1007/s12665-009-0073-x
https://doi.org/10.1190/1.1440853
https://doi.org/10.1029/RS008i00
container_title GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
container_volume 14
container_issue 4
container_start_page 93
op_container_end_page 104
_version_ 1766302564070981632
spelling ftjges:oai:oai.gesj.elpub.ru:article/1890 2023-05-15T14:28:23+02:00 Radon Hazard In Permafrost Conditions: Current State Of Research Andrey Puchkov V. Evgeny Yakovlev Yu. Nicholas Hasson Guilherme A. N. Sobrinho Yuliana Tsykareva V. Alexey Tyshov S. Pavel Lapikov I. Ekaterina Ushakova V. The work was supported by the Russian Science Foundation grant No. 20-77-10057 «Diagnostics of permafrost degradation based on isotope tracers (234U/238U, δ18O+δ2H, 292 δ13C+14C) and by Russian Foundation for Basic Research grant No. 20-35-70060 «Investigations of the conditions for increased radon emanation in the sedimentary cover of areas of kimberlite magmatism (on example the Arkhangelsk diamondiferous province)». 2021-07-15 application/pdf https://ges.rgo.ru/jour/article/view/1890 https://doi.org/10.24057/2071-9388-2021-037 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/1890/590 Adopted I.P.C.C. (2014). Climate Change 2014 Synthesis Report. IPCC: Geneva, Szwitzerland. Al-Ahmady K.K., & Hintenlang D.E. (1994). Assessment of temperature-driven pressure differences with regard to radon entry and indoor radon concentration. AARST. Atlantic City: The American Association of Radon Scientists and Technologists. Arvela H. (1995). Seasonal variation in radon concentration of 3000 dwellings with model comparisons. Radiation Protection Dosimetry, 59(1), 33-42, DOI:10.1093/oxfordjournals.rpd.a082634. Astakhov N.E., Bartanova S.V., Tubanov C.A. (2015). Radon anomalies of some break zones in buryatia as the factor of radiation risk. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences, 17, 5-1 (in Russian with English summary). Bakaeva N., Kalaydo A. (2016). About the radon transport mechanisms into the buildings. Construction and reconstruction, (5), 51-59, (in Russian with English summary). Banerjee K.S., Basu A., Guin R., & Sengupta D. (2011). Radon (222Rn) level variations on a regional scale from the Singhbhum Shear Zone, India: A comparative evaluation between influence of basement U-activity and porosity. Radiation Physics and Chemistry, 80(5), 614-619, DOI:10.1016/j.radphyschem.2010.12.015. Baskaran M. (2016). Radon: A tracer for geological, geophysical and geochemical studies (Vol. 367). Basel: Springer, DOI:10.1007/978-3-319-21329-3. Berezina E.V., & Elansky N.F. (2009). 222 Rn concentrations in the atmospheric surface layer over continental Russia from observations in TROICA experiments. Izvestiya, Atmospheric and Oceanic Physics, 45(6), 757-769 (in Russian with English summary), DOI:10.1134/S0001433809060097. Berezina E.V., Elansky N.F., Moiseenko K.B., Safronov A.N., Skorokhod A.I., Lavrova O.V., . & Shumsky R.A. (2014). Estimation of biogenic CH4 and CO2 emissions and dry deposition of O3 using 222 Rn measurements in TROICA expeditions. Izvestiya, Atmospheric and Oceanic Physics, 50(6), 583-594 (in Russian with English summary), DOI:10.1134/S000143381406005X. Biskaborn B.K., Smith S.L., Noetzli J., Matthes H., Vieira G., Streletskiy D. A., . & Lantui H. (2019). Permafrost is warming at a global scale. Nature communications, 10(1), 1-11, DOI:10.1038/s41467-018-08240-4. Blonsky A.V., Mitrushkin D.A., & Savenkov E.B. (2017). Simulation of flows in a discrete crack system: computational algorithms. Preprints of the Institute of applied mathematics. M. V. Keldysh RAS, (0), 66-30, (in Russian with English summary), DOI:10.20948/prepr-2017-66. Bridge N.J., Banerjee N.R., Finnigan C.S., Carpenter R., & Ward J. (2009, December). The Lac Cinquante Uranium Deposit, Nunavut, Canada. In AGU Fall Meeting Abstracts, 2009, V33D-2065. Brown J., Ferrians Jr.O.J., Heginbottom J.A., & Melnikov E.S. (1997). Circum-Arctic map of permafrost and ground-ice conditions, Reston, VA: US Geological Survey, 45, DOI:10.3133/CP45. Buldovicz S.N., Khilimonyuk V.Z., Bychkov A.Y., Ospennikov E.N., Vorobyev S.A., Gunar A.Y., . & Amanzhurov R.M. (2018). Cryovolcanism on the earth: Origin of a spectacular crater in the Yamal Peninsula (Russia). Scientific reports, 8(1), 1-6. Chen J. (2009). A preliminary design of a radon potential map for Canada: a multi-tier approach. Environmental Earth Sciences, 59(4), 775-782, DOI:10.1007/s12665-009-0073-x. Chi G., Haid T., Quirt D., Fayek M., Blamey N., & Chu H. (2017). Petrography, fluid inclusion analysis, and geochronology of the End uranium deposit, Kiggavik, Nunavut, Canada. Mineralium Deposita, 52(2), 211-232, DOI:10.1007/s00126-016-0657-9. Chuvilin E.M., Grebenkin S.I., & Zhmaev M.V. (2018). Influence of hydrate and ice formation on the gas permeability of sandy rocks. Vesti gas science, 3(35), (in Russian with English summary). Ciotoli G., Voltaggio M., Tuccimei P., Soligo M., Pasculli A., Beaubien S.E., & Bigi S. (2017). Geographically weighted regression and geostatistical techniques to construct the geogenic radon potential map of the Lazio region: A methodological proposal for the European Atlas of Natural Radiation. Journal of environmental radioactivity, 166, 355-375, 10.1016/j.jenvrad.2016.05.010. Clulow F.V., Davé N.K., Lim T.P., & Avadhanula R. (1998). Radionuclides (lead-210, polonium-210, thorium-230, and-232) and thorium and uranium in water, sediments, and fish from lakes near the city of Elliot Lake, Ontario, Canada. Environmental Pollution, 99(2), 199-213., DOI:10.1016/S0269-7491(97)00187-5. Coletti C., Brattich E., Cinelli G., Cultrone G., Maritan L., Mazzoli C., . & Sassi R. (2020). Radionuclide concentration and radon exhalation in new mix design of bricks produced reusing NORM by-products: The influence of mineralogy and texture. Construction and Building Materials, 260, 119820, DOI:10.1016/j.conbuildmat.2020.119820. Council Directive 2013/59/Euratom (05.12.2013) Daraktchieva Z., Wasikiewicz J.M., Howarth C.B., & Miller C.A. (2021). Study of baseline radon levels in the context of a shale gas development. Science of The Total Environment, 753, 141952, DOI:10.1016/j.scitotenv.2020.141952. Doloisio N., & Vanderlinden J.P. (2020). The perception of permafrost thaw in the Sakha Republic (Russia): Narratives, culture and risk in the face of climate change. Polar Science, 26, 100589, DOI:10.1016/j.polar.2020.100589. Domingos F., & Pereira A. (2018). Implications of alteration processes on radon emanation, radon production rate and W-Sn exploration in the Panasqueira ore district. Science of The Total Environment, 622, 825-840, DOI:10.1016/j.scitotenv.2017.12.028. Dushin V.A., Kuznetsov V.I., & Grigoriev V.V. (1997). Assessment of the prospects and conditions for the localization of new and unconventional types of mineral raw materials in the north of the Urals. In Polar Ural-new mineral resource base of Russia (proceedings of the 1st Polar-Ural scientific and practical conference). Tyumen-Salekhard, 26. (in Russian). Eakin M., Brownlee S.J., Baskaran M., & Barbero L. (2016). Mechanisms of radon loss from zircon: microstructural controls on emanation and diffusion. Geochimica et Cosmochimica Acta, 184, 212-226, DOI:10.1016/j.gca.2016.04.024. Eksorb.com (2016). NPP «EXORB» LLC. [online] Available at: https://eksorb.com/radon/ [Accessed 20 Mar. 2021]. Evangelista H., & Pereira E. B. (2002). Radon flux at king George island, Antarctic peninsula. Journal of environmental radioactivity, 61(3), 283-304, DOI:10.1016/S0265-931X(01)00137-0. Federal Law as of 09.01.1996 No. 3-FZ «About Radiation Safety of the Public», Russia. Federal Law as of 30.12.2009 No. 384-FZ «Technical Regulations for Safety of Buildings and Structures», Russia. Feng S., Wang H., Cui Y., Ye Y., Liu Y., Li X., . & Yang R. (2020). Fractal discrete fracture network model for the analysis of radon migration in fractured media. Computers and Geotechnics, 128, 103810, DOI:10.1016/j.compgeo.2020.103810. Giustini F., Ciotoli G., Rinaldini A., Ruggiero L., & Voltaggio M. (2019). Mapping the geogenic radon potential and radon risk by using Empirical Bayesian Kriging regression: A case study from a volcanic area of central Italy. Science of the Total Environment, 661, 449-464, DOI:10.1016/j.scitotenv.2019.01.146. Glover P.W.J. (2006). Increased domestic radon exposure caused by permafrost thawing due to global climate change, EGU General Assembly, Vienna, Austria, 2-7 April. EGU06-A-01439. Glover P.W., & Blouin M. (2007). Modelling increased soil radon emanation caused by instantaneous and gradual permafrost thawing due to global climate warming. Hassan N.M., Hosoda M., Ishikawa T., Sorimachi A., Sahoo S.K., Tokonami S., & Fukushi M. (2009). Radon migration process and its influence factors; review. Japanese Journal of Health Physics, 44(2), 218-231, DOI:10.5453/jhps.44.218. Heslop J.K., Winkel M., Walter Anthony K.M., Spencer R.G.M., Podgorski D.C., Zito P., . & Liebner S. (2019). Increasing organic carbon biolability with depth in yedoma permafrost: ramifications for future climate change. Journal of Geophysical Research: Biogeosciences, 124(7), 2021-2038, DOI:10.1029/2018JG004712. Hoekstra P. (1978). Electromagnetic methods for mapping shallow permafrost. Geophysics, 43(4), 681-874, DOI:10.1190/1.1440853. IAEA (2013). Measurement and Calculation of Radon Releases from NORM Residues. Technical Reports Series, 474. IAEA, Austria. Ji M., Kong W., Liang C., Zhou T., Jia H., & Dong X. (2020). Permafrost thawing exhibits a greater influence on bacterial richness and community structure than permafrost age in Arctic permafrost soils. The Cryosphere, 14(11), 3907-3916, DOI:10.5194/tc-14-3907-2020. Kawabata K., Sato T., Takahashi H. A., Tsunomori F., Hosono T., Takahashi M., & Kitamura Y. (2020). Changes in groundwater radon concentrations caused by the 2016 Kumamoto earthquake. Journal of Hydrology, 584, 124712, DOI:10.1016/j.jhydrol.2020.124712. Klimshin A.V., Kozlova I.A., Rybakov E.N., Lukovskoy M.Yu. (2010). Effect of freezing the surface layer of soil on the radon transport. Vestnik Kamchatskoy regional’noy assotsiatsii «Uchebno-nauchnyy tsentr». Seriya: Nauki o Zemle, 16(2), 146-151 (in Russian with English summary). Koptev D.P. (2020). Norilsk spill: lessons and consequences. Drilling and Oil, (7-8), 3-9. (in Russian with English summary). Kropat G., Bochud F., Murith C., Palacios M., & Baechler S. (2017). Modeling of geogenic radon in Switzerland based on ordered logistic regression. Journal of environmental radioactivity, 166, 376-381, DOI:10.1016/j.jenvrad.2016.06.007. Krupp K., Baskaran M., & Brownlee S.J. (2017). Radon emanation coefficients of several minerals: How they vary with physical and mineralogical properties. American Mineralogist: Journal of Earth and Planetary Materials, 102(7), 1375-1383, DOI:10.2138/am-2017-6017. Kuo T., & Tsunomori F. (2014). Estimation of fracture porosity using radon as a tracer. Journal of Petroleum Science and Engineering, 122, 700-704, DOI:10.1016/j.petrol.2014.09.012. Leonard L.J., Mazzotti S., Cassidy J.C., Rogers G., & Halchuk S. (2010). Seismic hazard in western canada from global positioning system strain rate data. Proceedings of the 9th U.S. National and 10th Canadian Conference on Earthquake Engineering Compte Rendu de la 9ième Conférence Nationale Américaine et 10ième Conférence Canadienne de Génie Parasismique July 25-29, 753, 1-10. Li Y., Tan W., Tan K., Liu Z., Fang Q., Lv J., . & Guo Y. (2018). The effect of laterite density on radon diffusion behavior. Applied Radiation and Isotopes, 132, 164-169, DOI:10.1016/j.apradiso.2017.12.001. Liu L., Zhao D., Wei J., Zhuang Q., Gao X., Zhu Y., . & Zheng D. (2021). Permafrost sensitivity to global warming of 1.5° C and 2° C in the Northern Hemisphere. Environmental Research Letters, 16(3), 034038, DOI:10.1088/1748-9326/abd6a8. Livshits M., Gulabyants L. (2017). The mathematical solution of the boundary problem of radon transfer in the system «soil – atmosphere – building». Fundamental, exploratory and applied research of the russian academy of natural sciences on scientific support for the development of architecture, urban planning and the construction industry of the russian federation in 2016, 218-226. (in Russian with English summary). Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 14, No 4 (2021); 93-104 2542-1565 2071-9388 Radon hazard radiation safety permafrost;Arctic climate warming radon-hazardous territory natural radioactivity uranium ore legislation measurement method info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2021 ftjges https://doi.org/10.24057/2071-9388-2021-037 https://doi.org/10.1093/oxfordjournals.rpd.a082634 https://doi.org/10.1007/978-3-319-21329-3 https://doi.org/10.1007/s12665-009-0073-x https://doi.org/10.1190/1.1440853 https://doi.org/10.1029/RS008i00 2022-01-04T17:42:59Z In this paper, we review both practical and theoretical assessments for evaluating radon geohazards from permafrost landforms in northern environments (>60º N). Here, we show that polar amplification (i.e. climate change) leads to the development of thawing permafrost, ground subsidence, and thawed conduits (i.e. Taliks), which allow radon migration from the subsurface to near surface environment. Based on these survey results, we conjecture that abruptly thawing permafrost soils will allow radon migration to the near surface, and likely impacting human settlements located here. We analyze potential geohazards associated with elevated ground concentrations of natural radionuclides. From these results, we apply the main existing legislation governing the control of radon parameters in the design, construction and use of buildings, as well as existing technologies for assessing the radon hazard. We found that at present, these laws do not consider our findings, namely, that increasing supply of radon to the surface during thawing of permafrost will enhance radon exposure, thereby, changing prior assumptions from which the initial legislation was determined. Hence, the legislation will likely need to respond and reconsider risk assessments of public health in relation to radon exposure. We discuss the prospects for developing radon geohazard monitoring, methodical approaches, and share recommendations based on the current state of research in permafrost effected environments. Article in Journal/Newspaper Arctic Arctic Climate change permafrost Polar Science Polar Science The Cryosphere Geography, Environment, Sustainability (E-Journal) Arctic GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 14 4 93 104