The Phenomenon Of Emiliania Huxleyi In Aspects Of Global Climate And The Ecology Of The World Ocean

Emiliania huxleyi (Lohmann) evolved from the genus Gephyrocapsa Kamptner (Prymneosiophyceae) of the coccolithophore family Naёlaerhadaceae. Over the past 100 thousand years E. huxleyi has acquired the status of the most ecologically predominant coccolithophore due to its remarkable adaptability to a...

Full description

Bibliographic Details
Published in:GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
Main Authors: Dmitry Pozdnyakov V., Natalia Gnatiuk V., Richard Davy, Leonid Bobylev P.
Other Authors: We acknowledge with gratitude that this work was funded by Saint Petersburg State University, project N 75295423 (i.bashmachnikov@spbu.ru)
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2021
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/1866
https://doi.org/10.24057/2071-9388-2020-214
id ftjges:oai:oai.gesj.elpub.ru:article/1866
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic coccolithophores
Emiliania huxleyi
cell morphology
genetic diversity
physiology
blooms
environment and forward and feedback interactions
climate change and future scenarios
spellingShingle coccolithophores
Emiliania huxleyi
cell morphology
genetic diversity
physiology
blooms
environment and forward and feedback interactions
climate change and future scenarios
Dmitry Pozdnyakov V.
Natalia Gnatiuk V.
Richard Davy
Leonid Bobylev P.
The Phenomenon Of Emiliania Huxleyi In Aspects Of Global Climate And The Ecology Of The World Ocean
topic_facet coccolithophores
Emiliania huxleyi
cell morphology
genetic diversity
physiology
blooms
environment and forward and feedback interactions
climate change and future scenarios
description Emiliania huxleyi (Lohmann) evolved from the genus Gephyrocapsa Kamptner (Prymneosiophyceae) of the coccolithophore family Naёlaerhadaceae. Over the past 100 thousand years E. huxleyi has acquired the status of the most ecologically predominant coccolithophore due to its remarkable adaptability to a variety of environmental conditions and interspecific competitiveness. E. huxleyi plays an important role in both the marine carbon system and carbon cycling between the atmosphere and ocean due to its ability to produce organic and inorganic carbon as well as to form massive blooms throughout the world ocean. This study examines both older information and recent findings to shed light on the current tendencies in the two-way interactions between E. huxleyi blooms and the immediate and global environment under conditions of climate change. The assembled knowledge has emerged from laboratory and mesocosm instrumental investigations, retrievals of satellite remote sensing data, machine learning/statistical analyses, and numerical simulations. Special attention is given to both the quantitative data reported over the last two decades on such interactions, and the only very recently appearing mid-term projections of E. huxleyi bloom dynamics across the world ocean. These blooms strongly affect the atmosphere and ocean carbon cycles. They reduce CO2 fluxes from by ~50% to ~150% as is documented for the North Atlantic, and on the global scale release particulate inorganic carbon as calcium calcite in the amounts assessed at 0.4 to 4.8 PgC/yr. At the same time, they are also sensitive to the atmospheric and oceanic state. This results in E. huxleyi blooms having an increased impact on the environment in response to ongoing global warming.
author2 We acknowledge with gratitude that this work was funded by Saint Petersburg State University, project N 75295423 (i.bashmachnikov@spbu.ru)
format Article in Journal/Newspaper
author Dmitry Pozdnyakov V.
Natalia Gnatiuk V.
Richard Davy
Leonid Bobylev P.
author_facet Dmitry Pozdnyakov V.
Natalia Gnatiuk V.
Richard Davy
Leonid Bobylev P.
author_sort Dmitry Pozdnyakov V.
title The Phenomenon Of Emiliania Huxleyi In Aspects Of Global Climate And The Ecology Of The World Ocean
title_short The Phenomenon Of Emiliania Huxleyi In Aspects Of Global Climate And The Ecology Of The World Ocean
title_full The Phenomenon Of Emiliania Huxleyi In Aspects Of Global Climate And The Ecology Of The World Ocean
title_fullStr The Phenomenon Of Emiliania Huxleyi In Aspects Of Global Climate And The Ecology Of The World Ocean
title_full_unstemmed The Phenomenon Of Emiliania Huxleyi In Aspects Of Global Climate And The Ecology Of The World Ocean
title_sort phenomenon of emiliania huxleyi in aspects of global climate and the ecology of the world ocean
publisher Russian Geographical Society
publishDate 2021
url https://ges.rgo.ru/jour/article/view/1866
https://doi.org/10.24057/2071-9388-2020-214
genre Arctic
North Atlantic
genre_facet Arctic
North Atlantic
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 14, No 2 (2021); 50-62
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/1866/552
Alcolombri U., Ben-Dor S., Feldmesser E., Levi Y, Tawfik D. S. and Vardi A. (2015). Identification of the algal dimethyl sulfide-releasing enzyme: A missing link in the marine sulfur cycle. Science, 348(6242), 1466-1469, DOI:10.1126/science.aab1586.
Alekin O. (1966). Ocean chemistry. Leningrad: Gidrometizdat, 344p. (in Russian).
Alexander H., Rouco M., Sheean T. H. and Dyhrman S. T. (2020). Transcriptional response of Emiliania huxleyi under changing nutrient environments in the North Pacific Subtropical Gyre. Environmental Microbiology, 22(5), 1847-1860, DOI:10.1111/1462-2920.14942.
Althoff F., Benzing K., Comba P, McRoberts C., Boyd D. R., Greiner S. and Keppler F. (2014). Abiotic methanogenesis from organosulphur compounds under ambient conditions. Nature Communications, 5(1), 1-9, DOI:10.1038/ncomms5205.
Amelina A., Segeeva V., Arashkevich E., Drifts A., Louppova N. and Solovyev K. (2017). Feeding of the dominant herbivorous plankton species in the Black Sea and their role in coccolithophorid consumption. Oceanology, 57(6), 806-816, DOI:10.1134/S000143701706011X.
Bach L.T., Riebesell U. and Schulz K. G. (2011). Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 56(6), 2040-2050, DOI:10.4319/lo.2011.56.6.2040.
Bach L.T., Mackinder L.C., Schulz K.G., Wheeler G., Schroeder D.C., Brownlee C. and Riebesell U. (2013). Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New Phytologist, 199(1), 121-134, DOI:10.1111/nph.12225.
Bach L.T., Riebesell U., Gutowska M.A., Federwisch L. and Schulz K.G. (2015). A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Progress in Oceanography, 135, 125-138, DOI:10.1016/j.pocean.2015.04.012.
Balch W.M., Bowler B.C., Lubelczyk L.C. and Stevens M.W. (2014). Aerial extent, composition, bio-optics and biogeochemistry of a massive under-ice algal bloom in the Arctic. Deep-Sea Research II, 105, 42-58, DOI:10.1016/j.dsr2.2014.04.001.
Balch W.M., Kilpatrick K., Holligan P.M. and Cucci T. (1993). Coccolith production and detachment by Emiliania huxleyi (Prymnesiophyceae). Journal of Phycology, 29(5), 566-575, DOI:10.1111/j.0022-3646.1993.00566.x.
Balch W.M., Bates N.R., Lam PJ., Twining B.S., Rosengard S.Z., Bowler B.C., Drapeau D.T., Garley R., Lubelczyk L.C., Mitchell C. and Rauschenberg S. (2016). Factors regulating the Great Calcite Belt in the Southern Ocean and its biogeochemical significance. Global Biogeochemical Cycles, 30(8), 1124-1144, DOI:10.1002/2016GB005414.
Benner I., Diner R.E., Lefebvre S.C., Li D., Komada T., Carpenter E.J. and Stillman J.H. (2013). Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2. Philosophical Transactions of the Royal Society B, 368(1627), 20130049, DOI:10.1098/rstb.2013.0049.
Boyd P.W. and Hutchins D.A. (2012). Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Marine Ecology Progress Series, 470, 125-135, DOI:10.3354/meps10121.
Brown C. and Yoder J. (1994). Coccolithophorid blooms in the Global ocean. Journal of Geophysical Research, 99(C4): 7467-7482, DOI:10.1029/93JC02156.
Brownlee C. and Taylor A. (2004). Calcification in coccolithophores: A cellular perspective. In: H. R. Thierstein, J. R. Young, ed., Coccolithophores. Springer, Berlin, Heidelberg, 31-49, DOI:10.1007/978-3-662-06278-4_2.
Brownlee C., Wheeler G.L. and Taylor A.R. (2015). Coccolithophore biomineralization: New questions, new answers. Seminars in Cell & Developmental Biology, 46, 11-16, DOI:10.1016/j.semcdb.2015.10.027.
Burenkov V.I., Kopelevich O.V., Rat'kova T.N. and Sheberstov S.V. (2011). Satellite observations of coccolithophorids in the Barents Sea. Okeanologiya. 51(5), 818-826 (in Russian).
Charalampopoulou A., Poulton A.J., Bakker D.C., Lucas M.I., Stinchcombe M.C. and Tyrrell T. (2016). Environmental drivers of coccolithophore abundance and calcification across Drake Passage (Southern Ocean). Biogeosciences, 13(21), 5917-5935, DOI:10.5194/bg-13-5917-2016.
Cokacar T., Oguz T. and Kubilay N. (2004). Satellite-detected early summer coccolithophore blooms and their interannual variability in the Black Sea. Deep-Sea Research I, 51(8), 1017-1031, DOI:10.1016/j.dsr.2004.03.007.
Daniels C.J., Poulton A.J., Balch W.M., Maranon E., Adey T., Bowler B.C. and Tyrrell T. (2018). A global compilation of coccolithophore calcification rates. Earth System Science Data, 10(4), 1859-1876, DOI:10.5194/essd-10-1859-2018.
Dlugokencky E. (2016). Annual Mean Carbon Dioxide Data. Earth System Research Laboratory, National Oceanic & Atmospheric Administration.
Durairaj P, Sarangi R.K., Ramalingam S., Thirunavukarassu T. and Chauhan P. (2015). Seasonal nitrate algorithms for nitrate retrieval using OCEANSAT-2 and MODIS-AQUA satellite data. Environmental Monitoring and Assessment, 187(4), 1-15, DOI:10.1007/s10661-015-4340-x.
Evans C., Kadner S., Darroch L., Wilson W., Liss P. and Malin G. (2007). The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulphoniopropionate (DMSP) cleavage: An Emiliania huxleyi culture study, Limnological and Oceanographic Methods, 53(3), 1036-1045, DOI:10.4319/lo.2007.52.3.1036.
Feng Y., Hare C. E., Leblanc K., Rose J. M., Zhang Y., DiTullio G. R. and Hutchins D. A. (2009). The effects of increased pCO2 and temperature on the North Atlantic spring bloom: I. Phytoplankton community and biogeochemical response. Marine Ecology Progress Series, 388, 13-25, DOI:10.3354/meps08133.
Feng Y., Roleda M. Y., Armstrong E., Law C. S., Boyd P. W. and Hurd C. L. (2018). Environmental controls on the elemental composition of a Southern Hemisphere strain of the coccolithophore Emiliania huxleyi. Biogeosciences, 15(2), 581-595, DOI:10.5194/bg-15-581-2018.
Fiorini S., Middelburg J. J. and Gattuso J.-P. (2011). Testing the effects of elevated pCO2 on coccolithophores (Prymnesiophyceae): comparison between haploid and diploid life stages. Journal of Phycology, 47(6), 1281-1291, DOI:10.1111/j.1529-8817.2011.01080.x.
Frada M. J., Bidle K. D., Probert I. and de Vargas C. (2012). In situ survey of life cycle phases of the coccolithophore Emiliania huxleyi (Haptophyta). Environmental Microbiology, 14(6), 1558-1569, DOI:10.1111/j.1462-2920.2012.02745.x.
Gao K., Ruan Z., Villafane V. E., Gattuso J. P. and Helbling E. W. (2009). Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi. Limnology and Oceanography, 54(6), 1855-1862, DOI:10.4319/lo.2009.54.6.1855.
Gnatiuk N., Radchenko I., Davy R., Morozov E. and Bobylev L. (2020). Simulation of factors affecting Emiliania huxleyi blooms in Arctic and sub-Arctic seas by CMIP5 climate models: model validation and selection. Biogeosciences, 17(4), 1199-1212, DOI:10.5194/bg-17-1199-2020.
Godoi R. H. M., Aerts K., Harlay J., Kaegi R., Ro C. U., Chou L. and van Grieken R. (2008). Organic surface coating on coccolithophores Emiliania huxleyi: Its determination and implication in the marine carbon cycle. Microchemical Journal, 91(2), 266-271, DOI:10.1016/j.microc.2008.12.009.
Godrijan J., Drapeau D. and Balch W. M. (2020). Mixotrophic uptake of organic compounds by coccolithophores. Limnology and Oceanog raphy, 65(6), 1410-1421, DOI:10.1002/lno.11396.
Green J.C., Course PA and Tarran G.A. (1996). The life-cycle of Emiliania huxleyi: A brief review and a study of relative ploidy levels analysed by flow cytometry. Journal of Marine Systems, 9(1-2), 33-44, DOI:10.1016/0924-7963(96)00014-0.
Hagino K., Bendif E.M., Young J.R., Kogame K., Probert I., Takano Y., Horiguchi T., Vargas C. and Okada H. (2011) New evidence for morphological and genetic variation in the cosmopolitan coccolithophore Emiliania huxleyi (Prymnesiophyceae) from the COX1b-ATP4 genes. Journal of Phycology, 47(5), 1164-1176, DOI:10.1111/j.1529-8817.2011.01053.x.
Harris R. P (2004). Zooplankton grazing on the coccolithophore Emiliania huxleyi and its role in inorganic carbon flux. Marine Biology, 119, 431-49, DOI:10.1007/BF00347540.
Hayden L. (2013). Effects of ocean acidification and nutrient enrichment on growth of the planktonic coccolithophore Emiliania huxleyi. Available at: https://www.mbl.edu/ses [Accessed 7 February 2021].
Iglesias-Rodriguez M.D., Halloran PR., Rickaby R.E., Hall I.R., Colmenero-Hidalgo E., Gittins J.R. and Boessenkool K.P. (2008). Phytoplankton calcification in a high-CO2 world. Science, 320 (5874), 336-340, DOI:10.1126/science.1154122.
Iglesias-Rodriguez M.D., Schofield O.M., Batley J., Medlin L.K. and Hayes PK. (2006). Intraspecific genetic diversity in the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae): the use of microsatellite analysis in marine phytoplankton population studies. Journal of Phycology, 42(3), 526-536, DOI:10.1111/j.1529-8817.2006.00231.x.
Johnsen S.A.L. and Bollmann J. (2020). Coccolith mass and morphology of different Emiliania huxleyi morphotypes: A critical examination using Canary Islands material. PLoS ONE, 15(3), e0230569, DOI:10.1371/journal.pone.0230569.
Kaffes A., Thoms S., Trimborn S., Rost B., Langer G., Richter K. U. and Giordano M. (2010). Carbon and nitrogen fluxes in the marine coccolithophore Emiliania huxleyi grown under different nitrate concentrations. Journal of Experimental Marine Biology and Ecology, 393(1-2), 1-8, DOI:10.1016/j.jembe.2010.06.004.
Klintzsch T., Langer G., Nehrke G., Wieland A., Lenhart K. and Keppler F. (2019). Methane production by three widespread marine phytoplankton species: release rates, precursor compounds and potential relevance for the environment. Biogeosciences, 16(20), 4129-4144, DOI:10.5194/bg-16-4129-2019.
Kondrik D.V., Kazakov E.E., Pozdnyakov D.V. and Johannessen O.M. (2019). Satellite evidence for enhancement of columnal mixing ratio of atmospheric CO2 over E. huxleyi blooms. Transactions of the Karelian Research Centre of the Russian Academy of Sciences, 9, 125-135.
Kondrik D.V., Pozdnyakov D.V. and Johannessen O.M. (2018). Satellite evidence that E. huxleyi phytoplankton blooms weaken marine carbon sinks. Geophysical Research Letters, 45(2), 846-854, DOI:10.1002/2017GL076240.
Kondrik D.V., Pozdnyakov D.V. and Pettersson L.H. (2017). Particulate inorganic carbon production within E. huxleyi blooms in subpolar and polar seas: a satellite time series study (1998-2013). International Journal of Remote Sensing, 38(22), 6179-6205, DOI:10.1080/01431161.2017.1350304.
Kopelevich O., Burenkov V., Sheberstov S., Vazyulya S., Kravchishina M., Pautova L. and Grigoriev A. (2013). Satellite monitoring of coccolithophore blooms in the Black Sea from ocean color data. Remote Sensing of Environment, 146, 113-123, DOI:10.1016/j.rse.2013.09.009.
Krumhardt K.M., Lovenduski N.S., Iglesias-Rodriguez M.D. and Kleypas J.A. (2017). Coccolithophore growth and calcification in a changing ocean. Progress in Oceanography, 159, 276-295, DOI:10.1016/j.pocean.2017.10.007.
Kubryakov A. A., Mikaelyan A. S. and Stanichny S. V. (2019). Summer and winter coccolithophore blooms in the Black Sea and their impact on production of dissolved organic matter from Bio-Argo data. Journal of Marine Systems, 199, 103220, DOI:10.1016/j.jmarsys.2019.103220.
Lana A., Bell T. G., Simo R., Vallina S. M., Ballabrera-Poy J., Kettle A. J. and Liss P S. (2011). An updated climatology of surface dimethylsulfide concentrations and emission fluxes in the global ocean. Global Biogeochemical Cycles, 25(1), GB1004, DOI:10.1029/2010GB003850.
Lenhart K., Klintzsch T., Langer G., Nehrke G., Bunge M., Schnell S. and Keppler F. (2016). Evidence for methane production by the marine algae Emiliania huxleyi. Biogeosciences, 13(10), 3163-3174, DOI:10.5194/bg-13-3163-2016.
Leon P, Walsham P, Bresnan E., Hartman S. E., Hughes S., Mackenzie K. and Webster L. (2018). Seasonal variability of the carbonate system and coccolithophore Emiliania huxleyi at a Scottish Coastal Observatory monitoring site. Estuarine, Coastal and Shelf Science, 202, 302-314, DOI:10.1016/j.ecss.2018.01.011.
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2020-214
https://doi.org/10.1126/science.aab1586
https://doi.org/10.1111/1462-2920.14942
https://doi.org/10.1038/ncomms5205
https://doi.org/10.1134/S000143701706011X
https://doi.org/10.4319/lo.2011.56.6.2040
container_title GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
container_volume 14
container_issue 2
container_start_page 50
op_container_end_page 62
_version_ 1766302545536352256
spelling ftjges:oai:oai.gesj.elpub.ru:article/1866 2023-05-15T14:28:22+02:00 The Phenomenon Of Emiliania Huxleyi In Aspects Of Global Climate And The Ecology Of The World Ocean Dmitry Pozdnyakov V. Natalia Gnatiuk V. Richard Davy Leonid Bobylev P. We acknowledge with gratitude that this work was funded by Saint Petersburg State University, project N 75295423 (i.bashmachnikov@spbu.ru) 2021-07-04 application/pdf https://ges.rgo.ru/jour/article/view/1866 https://doi.org/10.24057/2071-9388-2020-214 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/1866/552 Alcolombri U., Ben-Dor S., Feldmesser E., Levi Y, Tawfik D. S. and Vardi A. (2015). Identification of the algal dimethyl sulfide-releasing enzyme: A missing link in the marine sulfur cycle. Science, 348(6242), 1466-1469, DOI:10.1126/science.aab1586. Alekin O. (1966). Ocean chemistry. Leningrad: Gidrometizdat, 344p. (in Russian). Alexander H., Rouco M., Sheean T. H. and Dyhrman S. T. (2020). Transcriptional response of Emiliania huxleyi under changing nutrient environments in the North Pacific Subtropical Gyre. Environmental Microbiology, 22(5), 1847-1860, DOI:10.1111/1462-2920.14942. Althoff F., Benzing K., Comba P, McRoberts C., Boyd D. R., Greiner S. and Keppler F. (2014). Abiotic methanogenesis from organosulphur compounds under ambient conditions. Nature Communications, 5(1), 1-9, DOI:10.1038/ncomms5205. Amelina A., Segeeva V., Arashkevich E., Drifts A., Louppova N. and Solovyev K. (2017). Feeding of the dominant herbivorous plankton species in the Black Sea and their role in coccolithophorid consumption. Oceanology, 57(6), 806-816, DOI:10.1134/S000143701706011X. Bach L.T., Riebesell U. and Schulz K. G. (2011). Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 56(6), 2040-2050, DOI:10.4319/lo.2011.56.6.2040. Bach L.T., Mackinder L.C., Schulz K.G., Wheeler G., Schroeder D.C., Brownlee C. and Riebesell U. (2013). Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New Phytologist, 199(1), 121-134, DOI:10.1111/nph.12225. Bach L.T., Riebesell U., Gutowska M.A., Federwisch L. and Schulz K.G. (2015). A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Progress in Oceanography, 135, 125-138, DOI:10.1016/j.pocean.2015.04.012. Balch W.M., Bowler B.C., Lubelczyk L.C. and Stevens M.W. (2014). Aerial extent, composition, bio-optics and biogeochemistry of a massive under-ice algal bloom in the Arctic. Deep-Sea Research II, 105, 42-58, DOI:10.1016/j.dsr2.2014.04.001. Balch W.M., Kilpatrick K., Holligan P.M. and Cucci T. (1993). Coccolith production and detachment by Emiliania huxleyi (Prymnesiophyceae). Journal of Phycology, 29(5), 566-575, DOI:10.1111/j.0022-3646.1993.00566.x. Balch W.M., Bates N.R., Lam PJ., Twining B.S., Rosengard S.Z., Bowler B.C., Drapeau D.T., Garley R., Lubelczyk L.C., Mitchell C. and Rauschenberg S. (2016). Factors regulating the Great Calcite Belt in the Southern Ocean and its biogeochemical significance. Global Biogeochemical Cycles, 30(8), 1124-1144, DOI:10.1002/2016GB005414. Benner I., Diner R.E., Lefebvre S.C., Li D., Komada T., Carpenter E.J. and Stillman J.H. (2013). Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2. Philosophical Transactions of the Royal Society B, 368(1627), 20130049, DOI:10.1098/rstb.2013.0049. Boyd P.W. and Hutchins D.A. (2012). Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Marine Ecology Progress Series, 470, 125-135, DOI:10.3354/meps10121. Brown C. and Yoder J. (1994). Coccolithophorid blooms in the Global ocean. Journal of Geophysical Research, 99(C4): 7467-7482, DOI:10.1029/93JC02156. Brownlee C. and Taylor A. (2004). Calcification in coccolithophores: A cellular perspective. In: H. R. Thierstein, J. R. Young, ed., Coccolithophores. Springer, Berlin, Heidelberg, 31-49, DOI:10.1007/978-3-662-06278-4_2. Brownlee C., Wheeler G.L. and Taylor A.R. (2015). Coccolithophore biomineralization: New questions, new answers. Seminars in Cell & Developmental Biology, 46, 11-16, DOI:10.1016/j.semcdb.2015.10.027. Burenkov V.I., Kopelevich O.V., Rat'kova T.N. and Sheberstov S.V. (2011). Satellite observations of coccolithophorids in the Barents Sea. Okeanologiya. 51(5), 818-826 (in Russian). Charalampopoulou A., Poulton A.J., Bakker D.C., Lucas M.I., Stinchcombe M.C. and Tyrrell T. (2016). Environmental drivers of coccolithophore abundance and calcification across Drake Passage (Southern Ocean). Biogeosciences, 13(21), 5917-5935, DOI:10.5194/bg-13-5917-2016. Cokacar T., Oguz T. and Kubilay N. (2004). Satellite-detected early summer coccolithophore blooms and their interannual variability in the Black Sea. Deep-Sea Research I, 51(8), 1017-1031, DOI:10.1016/j.dsr.2004.03.007. Daniels C.J., Poulton A.J., Balch W.M., Maranon E., Adey T., Bowler B.C. and Tyrrell T. (2018). A global compilation of coccolithophore calcification rates. Earth System Science Data, 10(4), 1859-1876, DOI:10.5194/essd-10-1859-2018. Dlugokencky E. (2016). Annual Mean Carbon Dioxide Data. Earth System Research Laboratory, National Oceanic & Atmospheric Administration. Durairaj P, Sarangi R.K., Ramalingam S., Thirunavukarassu T. and Chauhan P. (2015). Seasonal nitrate algorithms for nitrate retrieval using OCEANSAT-2 and MODIS-AQUA satellite data. Environmental Monitoring and Assessment, 187(4), 1-15, DOI:10.1007/s10661-015-4340-x. Evans C., Kadner S., Darroch L., Wilson W., Liss P. and Malin G. (2007). The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulphoniopropionate (DMSP) cleavage: An Emiliania huxleyi culture study, Limnological and Oceanographic Methods, 53(3), 1036-1045, DOI:10.4319/lo.2007.52.3.1036. Feng Y., Hare C. E., Leblanc K., Rose J. M., Zhang Y., DiTullio G. R. and Hutchins D. A. (2009). The effects of increased pCO2 and temperature on the North Atlantic spring bloom: I. Phytoplankton community and biogeochemical response. Marine Ecology Progress Series, 388, 13-25, DOI:10.3354/meps08133. Feng Y., Roleda M. Y., Armstrong E., Law C. S., Boyd P. W. and Hurd C. L. (2018). Environmental controls on the elemental composition of a Southern Hemisphere strain of the coccolithophore Emiliania huxleyi. Biogeosciences, 15(2), 581-595, DOI:10.5194/bg-15-581-2018. Fiorini S., Middelburg J. J. and Gattuso J.-P. (2011). Testing the effects of elevated pCO2 on coccolithophores (Prymnesiophyceae): comparison between haploid and diploid life stages. Journal of Phycology, 47(6), 1281-1291, DOI:10.1111/j.1529-8817.2011.01080.x. Frada M. J., Bidle K. D., Probert I. and de Vargas C. (2012). In situ survey of life cycle phases of the coccolithophore Emiliania huxleyi (Haptophyta). Environmental Microbiology, 14(6), 1558-1569, DOI:10.1111/j.1462-2920.2012.02745.x. Gao K., Ruan Z., Villafane V. E., Gattuso J. P. and Helbling E. W. (2009). Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi. Limnology and Oceanography, 54(6), 1855-1862, DOI:10.4319/lo.2009.54.6.1855. Gnatiuk N., Radchenko I., Davy R., Morozov E. and Bobylev L. (2020). Simulation of factors affecting Emiliania huxleyi blooms in Arctic and sub-Arctic seas by CMIP5 climate models: model validation and selection. Biogeosciences, 17(4), 1199-1212, DOI:10.5194/bg-17-1199-2020. Godoi R. H. M., Aerts K., Harlay J., Kaegi R., Ro C. U., Chou L. and van Grieken R. (2008). Organic surface coating on coccolithophores Emiliania huxleyi: Its determination and implication in the marine carbon cycle. Microchemical Journal, 91(2), 266-271, DOI:10.1016/j.microc.2008.12.009. Godrijan J., Drapeau D. and Balch W. M. (2020). Mixotrophic uptake of organic compounds by coccolithophores. Limnology and Oceanog raphy, 65(6), 1410-1421, DOI:10.1002/lno.11396. Green J.C., Course PA and Tarran G.A. (1996). The life-cycle of Emiliania huxleyi: A brief review and a study of relative ploidy levels analysed by flow cytometry. Journal of Marine Systems, 9(1-2), 33-44, DOI:10.1016/0924-7963(96)00014-0. Hagino K., Bendif E.M., Young J.R., Kogame K., Probert I., Takano Y., Horiguchi T., Vargas C. and Okada H. (2011) New evidence for morphological and genetic variation in the cosmopolitan coccolithophore Emiliania huxleyi (Prymnesiophyceae) from the COX1b-ATP4 genes. Journal of Phycology, 47(5), 1164-1176, DOI:10.1111/j.1529-8817.2011.01053.x. Harris R. P (2004). Zooplankton grazing on the coccolithophore Emiliania huxleyi and its role in inorganic carbon flux. Marine Biology, 119, 431-49, DOI:10.1007/BF00347540. Hayden L. (2013). Effects of ocean acidification and nutrient enrichment on growth of the planktonic coccolithophore Emiliania huxleyi. Available at: https://www.mbl.edu/ses [Accessed 7 February 2021]. Iglesias-Rodriguez M.D., Halloran PR., Rickaby R.E., Hall I.R., Colmenero-Hidalgo E., Gittins J.R. and Boessenkool K.P. (2008). Phytoplankton calcification in a high-CO2 world. Science, 320 (5874), 336-340, DOI:10.1126/science.1154122. Iglesias-Rodriguez M.D., Schofield O.M., Batley J., Medlin L.K. and Hayes PK. (2006). Intraspecific genetic diversity in the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae): the use of microsatellite analysis in marine phytoplankton population studies. Journal of Phycology, 42(3), 526-536, DOI:10.1111/j.1529-8817.2006.00231.x. Johnsen S.A.L. and Bollmann J. (2020). Coccolith mass and morphology of different Emiliania huxleyi morphotypes: A critical examination using Canary Islands material. PLoS ONE, 15(3), e0230569, DOI:10.1371/journal.pone.0230569. Kaffes A., Thoms S., Trimborn S., Rost B., Langer G., Richter K. U. and Giordano M. (2010). Carbon and nitrogen fluxes in the marine coccolithophore Emiliania huxleyi grown under different nitrate concentrations. Journal of Experimental Marine Biology and Ecology, 393(1-2), 1-8, DOI:10.1016/j.jembe.2010.06.004. Klintzsch T., Langer G., Nehrke G., Wieland A., Lenhart K. and Keppler F. (2019). Methane production by three widespread marine phytoplankton species: release rates, precursor compounds and potential relevance for the environment. Biogeosciences, 16(20), 4129-4144, DOI:10.5194/bg-16-4129-2019. Kondrik D.V., Kazakov E.E., Pozdnyakov D.V. and Johannessen O.M. (2019). Satellite evidence for enhancement of columnal mixing ratio of atmospheric CO2 over E. huxleyi blooms. Transactions of the Karelian Research Centre of the Russian Academy of Sciences, 9, 125-135. Kondrik D.V., Pozdnyakov D.V. and Johannessen O.M. (2018). Satellite evidence that E. huxleyi phytoplankton blooms weaken marine carbon sinks. Geophysical Research Letters, 45(2), 846-854, DOI:10.1002/2017GL076240. Kondrik D.V., Pozdnyakov D.V. and Pettersson L.H. (2017). Particulate inorganic carbon production within E. huxleyi blooms in subpolar and polar seas: a satellite time series study (1998-2013). International Journal of Remote Sensing, 38(22), 6179-6205, DOI:10.1080/01431161.2017.1350304. Kopelevich O., Burenkov V., Sheberstov S., Vazyulya S., Kravchishina M., Pautova L. and Grigoriev A. (2013). Satellite monitoring of coccolithophore blooms in the Black Sea from ocean color data. Remote Sensing of Environment, 146, 113-123, DOI:10.1016/j.rse.2013.09.009. Krumhardt K.M., Lovenduski N.S., Iglesias-Rodriguez M.D. and Kleypas J.A. (2017). Coccolithophore growth and calcification in a changing ocean. Progress in Oceanography, 159, 276-295, DOI:10.1016/j.pocean.2017.10.007. Kubryakov A. A., Mikaelyan A. S. and Stanichny S. V. (2019). Summer and winter coccolithophore blooms in the Black Sea and their impact on production of dissolved organic matter from Bio-Argo data. Journal of Marine Systems, 199, 103220, DOI:10.1016/j.jmarsys.2019.103220. Lana A., Bell T. G., Simo R., Vallina S. M., Ballabrera-Poy J., Kettle A. J. and Liss P S. (2011). An updated climatology of surface dimethylsulfide concentrations and emission fluxes in the global ocean. Global Biogeochemical Cycles, 25(1), GB1004, DOI:10.1029/2010GB003850. Lenhart K., Klintzsch T., Langer G., Nehrke G., Bunge M., Schnell S. and Keppler F. (2016). Evidence for methane production by the marine algae Emiliania huxleyi. Biogeosciences, 13(10), 3163-3174, DOI:10.5194/bg-13-3163-2016. Leon P, Walsham P, Bresnan E., Hartman S. E., Hughes S., Mackenzie K. and Webster L. (2018). Seasonal variability of the carbonate system and coccolithophore Emiliania huxleyi at a Scottish Coastal Observatory monitoring site. Estuarine, Coastal and Shelf Science, 202, 302-314, DOI:10.1016/j.ecss.2018.01.011. Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 14, No 2 (2021); 50-62 2542-1565 2071-9388 coccolithophores Emiliania huxleyi cell morphology genetic diversity physiology blooms environment and forward and feedback interactions climate change and future scenarios info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2021 ftjges https://doi.org/10.24057/2071-9388-2020-214 https://doi.org/10.1126/science.aab1586 https://doi.org/10.1111/1462-2920.14942 https://doi.org/10.1038/ncomms5205 https://doi.org/10.1134/S000143701706011X https://doi.org/10.4319/lo.2011.56.6.2040 2021-07-06T16:36:22Z Emiliania huxleyi (Lohmann) evolved from the genus Gephyrocapsa Kamptner (Prymneosiophyceae) of the coccolithophore family Naёlaerhadaceae. Over the past 100 thousand years E. huxleyi has acquired the status of the most ecologically predominant coccolithophore due to its remarkable adaptability to a variety of environmental conditions and interspecific competitiveness. E. huxleyi plays an important role in both the marine carbon system and carbon cycling between the atmosphere and ocean due to its ability to produce organic and inorganic carbon as well as to form massive blooms throughout the world ocean. This study examines both older information and recent findings to shed light on the current tendencies in the two-way interactions between E. huxleyi blooms and the immediate and global environment under conditions of climate change. The assembled knowledge has emerged from laboratory and mesocosm instrumental investigations, retrievals of satellite remote sensing data, machine learning/statistical analyses, and numerical simulations. Special attention is given to both the quantitative data reported over the last two decades on such interactions, and the only very recently appearing mid-term projections of E. huxleyi bloom dynamics across the world ocean. These blooms strongly affect the atmosphere and ocean carbon cycles. They reduce CO2 fluxes from by ~50% to ~150% as is documented for the North Atlantic, and on the global scale release particulate inorganic carbon as calcium calcite in the amounts assessed at 0.4 to 4.8 PgC/yr. At the same time, they are also sensitive to the atmospheric and oceanic state. This results in E. huxleyi blooms having an increased impact on the environment in response to ongoing global warming. Article in Journal/Newspaper Arctic North Atlantic Geography, Environment, Sustainability (E-Journal) GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 14 2 50 62