QUANTIFYING REGIONAL SEA LEVEL RISE CONTRIBUTIONS FROM THE GREENLAND ICE SHEET

This study projects the sea level contribution from the Greenland ice sheet (GrIS) through to 2100, using a recently developed ice dynamics model forced by atmospheric parameters derived from three different climate models (CGCMs). The geographical pattern of the near-surface ice warming imposes a d...

Full description

Bibliographic Details
Published in:GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
Main Authors: Diandong Ren, Lance Leslie, Mervyn Lynch, Qinghua Ye
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2013
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/141
https://doi.org/10.24057/2071-9388-2013-6-3-77-85
id ftjges:oai:oai.gesj.elpub.ru:article/141
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic Greenland ice sheet;sea level rise;climate change;Earth system modling
spellingShingle Greenland ice sheet;sea level rise;climate change;Earth system modling
Diandong Ren
Lance Leslie
Mervyn Lynch
Qinghua Ye
QUANTIFYING REGIONAL SEA LEVEL RISE CONTRIBUTIONS FROM THE GREENLAND ICE SHEET
topic_facet Greenland ice sheet;sea level rise;climate change;Earth system modling
description This study projects the sea level contribution from the Greenland ice sheet (GrIS) through to 2100, using a recently developed ice dynamics model forced by atmospheric parameters derived from three different climate models (CGCMs). The geographical pattern of the near-surface ice warming imposes a divergent flow field favoring mass loss through enhanced ice flow. The calculated average mass loss rate during the latter half of the 21st century is ~0.64±0.06 mm/year eustatic sea level rise, which is significantly larger than the IPCC AR4 estimate from surface mass balance. The difference is due largely to the positive feedbacks from reduced ice viscosity and the basal sliding mechanism present in the ice dynamics model. This inter-model, inter-scenario spread adds approximately a 20% uncertainty to the IPCC ice model estimates. The sea level rise is geographically non-uniform and reaches 1.69±0.24 mm/year by 2100 for the northeast coastal region of the United States, amplified by the expected weakening of the Atlantic meridional overturning circulation (AMOC). In contrast to previous estimates, which neglected the GrIS fresh water input, both sides of the North Atlantic Gyre are projected to experience sea level rises. The impacts on a selection of major cities on both sides of the Atlantic and in the Pacific and southern oceans also are assessed. The other ocean basins are found to be less affected than the Atlantic Ocean.
format Article in Journal/Newspaper
author Diandong Ren
Lance Leslie
Mervyn Lynch
Qinghua Ye
author_facet Diandong Ren
Lance Leslie
Mervyn Lynch
Qinghua Ye
author_sort Diandong Ren
title QUANTIFYING REGIONAL SEA LEVEL RISE CONTRIBUTIONS FROM THE GREENLAND ICE SHEET
title_short QUANTIFYING REGIONAL SEA LEVEL RISE CONTRIBUTIONS FROM THE GREENLAND ICE SHEET
title_full QUANTIFYING REGIONAL SEA LEVEL RISE CONTRIBUTIONS FROM THE GREENLAND ICE SHEET
title_fullStr QUANTIFYING REGIONAL SEA LEVEL RISE CONTRIBUTIONS FROM THE GREENLAND ICE SHEET
title_full_unstemmed QUANTIFYING REGIONAL SEA LEVEL RISE CONTRIBUTIONS FROM THE GREENLAND ICE SHEET
title_sort quantifying regional sea level rise contributions from the greenland ice sheet
publisher Russian Geographical Society
publishDate 2013
url https://ges.rgo.ru/jour/article/view/141
https://doi.org/10.24057/2071-9388-2013-6-3-77-85
geographic Greenland
Pacific
geographic_facet Greenland
Pacific
genre Annals of Glaciology
Greenland
Ice Sheet
North Atlantic
genre_facet Annals of Glaciology
Greenland
Ice Sheet
North Atlantic
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 6, No 3 (2013); 77-85
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/141/141
Alley, R. (1993), In search of ice-stream sticky spots. J. Glaciol., 39, 447–454.
Alley, R. (2000), Ice-core evidence of abrupt climate changes. PNAS, 97, 1331–1334.
Alley, R., T. Dupont, B. Parizek, S. Anandakrishnan, D. Lawson, G. Larson, and E. Evenson
(2005), Outburst flooding and initiation of ice-stream surges in response to climatic cooling:
A hypothesis. Geomorphology, doi 10.1016.
Hooke, R., 1981: Flow law for polycrystalline ice in glaciers: comparison of theoretical
predictions, laboratory data, and field measurements. Rev. Geophys. Space Phys. 19,
pp. 664–672.
IPCC, AR4 (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working
Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change. Solomon, S., D. Qin, M. Manning (eds).
Landerer, F., Jungclaus, J., and J. Marotzke (2007), J. Phys. Oceanogr. 37, 296–312.
MacAyeal, D. (1992), Irregular oscillations of the west Antarctic ice sheet. Nature, 359,
pp. 29–32.
Meehl, G.A., et al. (2007), Global Climate Projections. In: Climate, Change 2007: The Physical
Science Basis. Cambridge University Press, Cambridge, UK and NY, USA. Projections of
Global Average Sea Level Change for the 21st Century Chapter 10, p 820.
Mernild, S., G. Liston, C. Hiemstra, J. Christensen (2010), Greenland Ice Sheet Surface Mass-
Balance Modeling in a 131-Yr Perspective, 1950–2080. Journal of Hydrometeorology, 11,
pp. 3–25.
Peltier, W. R. in Sea Level Rise: History and Consequences (eds Douglas, B. C., Kearney, M.
S. & Leatherman, S. P.) 65–95 (Academic, 2001).
Rahmstorf, S. (2007), A semi-empirical approach to projecting future sea-level rise. Science,
368–370.
Raper, S., and R. Braithwaite (2006), Low sea level rise projections from mountain glaciers
and icecaps under global warming. Nature, 439, pp. 311–313.
Ren, D., R. Fu, L. M. Leslie, D. J. Karoly, J. Chen, and C. Wilson (2011a), The Greenland ice
sheet response to transient climate change: verification with remotely sensed properties.
J. Climate. In press.
Ren, D., R. Fu, L. M. Leslie, D. J. Karoly, J. Chen, and C. Wilson (2011b), A multirheology ice
model: Formulation and application to the Greenland ice sheet, J. Geophys. Res., 116,
D05112, doi:10.1029/2010JD014855.
Rignot, E., and P. Kanagaratnam (2006), Changes in the velocity structure of the Greenland
ice sheet. Science, 311, pp. 986–990.
Van den Broeke, M., J. Bamber, J. Ettema, E. Rignot, E. Schrama, W. van de Berg, E. van Meijgaard,
I. Velicogna, B. Wouters (2009), Partitioning recent Greenland mass loss. Science,
pp. 984–986.
Van der Veen, C. (1999), Fundamentals of glacier dynamics. A.A. Balkema, Rotterdam,
Netherlands, 472 pp.
Wang Wang, W., R. Warner (1999), Modelling of anisotropic ice flow in Law Dome, East
Antarctica. Annals of Glaciology, 29, 184–190.
Yin, J., M. Schlesinger, and R. Stouffer (2009), Model projections of rapid sea-level rise on
the northeast coast of the United States. Nature-geosciences, 2, pp. 262–266.
Zwally, H., and M. Giovinetto (2001), Balance mass flux and ice velocity across the equilibrium
line in drainage systems of Greenland. J. Geophys. Res. 106, 33717–33728.
Zwinger, T., R. Greve, O. Gagliardini, T. Shiraiwa, and M. Lyly (2007), A full Stokes flow
thermo-mechanical model for firn and ice applied to Gorshkov crater glacier, Kamchatka,
Ann. Glaciol., 45, pp. 29–37.
https://ges.rgo.ru/jour/article/view/141
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2013-6-3-77-85
https://doi.org/10.1029/2010JD014855
container_title GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
container_volume 6
container_issue 3
container_start_page 77
op_container_end_page 85
_version_ 1766003662922973184
spelling ftjges:oai:oai.gesj.elpub.ru:article/141 2023-05-15T13:29:50+02:00 QUANTIFYING REGIONAL SEA LEVEL RISE CONTRIBUTIONS FROM THE GREENLAND ICE SHEET Diandong Ren Lance Leslie Mervyn Lynch Qinghua Ye 2013-09-01 application/pdf https://ges.rgo.ru/jour/article/view/141 https://doi.org/10.24057/2071-9388-2013-6-3-77-85 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/141/141 Alley, R. (1993), In search of ice-stream sticky spots. J. Glaciol., 39, 447–454. Alley, R. (2000), Ice-core evidence of abrupt climate changes. PNAS, 97, 1331–1334. Alley, R., T. Dupont, B. Parizek, S. Anandakrishnan, D. Lawson, G. Larson, and E. Evenson (2005), Outburst flooding and initiation of ice-stream surges in response to climatic cooling: A hypothesis. Geomorphology, doi 10.1016. Hooke, R., 1981: Flow law for polycrystalline ice in glaciers: comparison of theoretical predictions, laboratory data, and field measurements. Rev. Geophys. Space Phys. 19, pp. 664–672. IPCC, AR4 (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., D. Qin, M. Manning (eds). Landerer, F., Jungclaus, J., and J. Marotzke (2007), J. Phys. Oceanogr. 37, 296–312. MacAyeal, D. (1992), Irregular oscillations of the west Antarctic ice sheet. Nature, 359, pp. 29–32. Meehl, G.A., et al. (2007), Global Climate Projections. In: Climate, Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK and NY, USA. Projections of Global Average Sea Level Change for the 21st Century Chapter 10, p 820. Mernild, S., G. Liston, C. Hiemstra, J. Christensen (2010), Greenland Ice Sheet Surface Mass- Balance Modeling in a 131-Yr Perspective, 1950–2080. Journal of Hydrometeorology, 11, pp. 3–25. Peltier, W. R. in Sea Level Rise: History and Consequences (eds Douglas, B. C., Kearney, M. S. & Leatherman, S. P.) 65–95 (Academic, 2001). Rahmstorf, S. (2007), A semi-empirical approach to projecting future sea-level rise. Science, 368–370. Raper, S., and R. Braithwaite (2006), Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature, 439, pp. 311–313. Ren, D., R. Fu, L. M. Leslie, D. J. Karoly, J. Chen, and C. Wilson (2011a), The Greenland ice sheet response to transient climate change: verification with remotely sensed properties. J. Climate. In press. Ren, D., R. Fu, L. M. Leslie, D. J. Karoly, J. Chen, and C. Wilson (2011b), A multirheology ice model: Formulation and application to the Greenland ice sheet, J. Geophys. Res., 116, D05112, doi:10.1029/2010JD014855. Rignot, E., and P. Kanagaratnam (2006), Changes in the velocity structure of the Greenland ice sheet. Science, 311, pp. 986–990. Van den Broeke, M., J. Bamber, J. Ettema, E. Rignot, E. Schrama, W. van de Berg, E. van Meijgaard, I. Velicogna, B. Wouters (2009), Partitioning recent Greenland mass loss. Science, pp. 984–986. Van der Veen, C. (1999), Fundamentals of glacier dynamics. A.A. Balkema, Rotterdam, Netherlands, 472 pp. Wang Wang, W., R. Warner (1999), Modelling of anisotropic ice flow in Law Dome, East Antarctica. Annals of Glaciology, 29, 184–190. Yin, J., M. Schlesinger, and R. Stouffer (2009), Model projections of rapid sea-level rise on the northeast coast of the United States. Nature-geosciences, 2, pp. 262–266. Zwally, H., and M. Giovinetto (2001), Balance mass flux and ice velocity across the equilibrium line in drainage systems of Greenland. J. Geophys. Res. 106, 33717–33728. Zwinger, T., R. Greve, O. Gagliardini, T. Shiraiwa, and M. Lyly (2007), A full Stokes flow thermo-mechanical model for firn and ice applied to Gorshkov crater glacier, Kamchatka, Ann. Glaciol., 45, pp. 29–37. https://ges.rgo.ru/jour/article/view/141 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 6, No 3 (2013); 77-85 2542-1565 2071-9388 Greenland ice sheet;sea level rise;climate change;Earth system modling info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2013 ftjges https://doi.org/10.24057/2071-9388-2013-6-3-77-85 https://doi.org/10.1029/2010JD014855 2021-05-21T07:34:36Z This study projects the sea level contribution from the Greenland ice sheet (GrIS) through to 2100, using a recently developed ice dynamics model forced by atmospheric parameters derived from three different climate models (CGCMs). The geographical pattern of the near-surface ice warming imposes a divergent flow field favoring mass loss through enhanced ice flow. The calculated average mass loss rate during the latter half of the 21st century is ~0.64±0.06 mm/year eustatic sea level rise, which is significantly larger than the IPCC AR4 estimate from surface mass balance. The difference is due largely to the positive feedbacks from reduced ice viscosity and the basal sliding mechanism present in the ice dynamics model. This inter-model, inter-scenario spread adds approximately a 20% uncertainty to the IPCC ice model estimates. The sea level rise is geographically non-uniform and reaches 1.69±0.24 mm/year by 2100 for the northeast coastal region of the United States, amplified by the expected weakening of the Atlantic meridional overturning circulation (AMOC). In contrast to previous estimates, which neglected the GrIS fresh water input, both sides of the North Atlantic Gyre are projected to experience sea level rises. The impacts on a selection of major cities on both sides of the Atlantic and in the Pacific and southern oceans also are assessed. The other ocean basins are found to be less affected than the Atlantic Ocean. Article in Journal/Newspaper Annals of Glaciology Greenland Ice Sheet North Atlantic Geography, Environment, Sustainability (E-Journal) Greenland Pacific GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 6 3 77 85