RADIOCARBON CHRONOLOGY OF HOLOCENE PALSA OF BOL’SHEZEMEL’SKAYA TUNDRA IN RUSSIAN NORTH

Six palsa mire in Usa River valley and in Vorkuta area in North-eastern part of European Russia were studied in detail. In total 75 new 14C dates from different palsa sections were obtained. In palsa mire near Bugry Settlement 3.2 m high palsa dated from 8.6 to 2.1 ka BP. The permafrost and palsa be...

Full description

Bibliographic Details
Published in:GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
Main Authors: Yurij Vasil’chuk, Alla Vasil’chuk, Högne Jungner, Nadine Budantseva, Julia Chizhova
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2013
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/139
https://doi.org/10.24057/2071-9388-2013-6-3-38-59
id ftjges:oai:oai.gesj.elpub.ru:article/139
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic palsa;permafrost;mires;North-Eastern Europe;radiocarbon
spellingShingle palsa;permafrost;mires;North-Eastern Europe;radiocarbon
Yurij Vasil’chuk
Alla Vasil’chuk
Högne Jungner
Nadine Budantseva
Julia Chizhova
RADIOCARBON CHRONOLOGY OF HOLOCENE PALSA OF BOL’SHEZEMEL’SKAYA TUNDRA IN RUSSIAN NORTH
topic_facet palsa;permafrost;mires;North-Eastern Europe;radiocarbon
description Six palsa mire in Usa River valley and in Vorkuta area in North-eastern part of European Russia were studied in detail. In total 75 new 14C dates from different palsa sections were obtained. In palsa mire near Bugry Settlement 3.2 m high palsa dated from 8.6 to 2.1 ka BP. The permafrost and palsa began 2.1 ka BP. In palsa mire near Usa Settlement low moor peat in 2 m high palsa dated 3690 BP, palsa began to heave at least 3700 BP. A low-moor peat of 2.5 m high palsa indicates the change in the hydrological-mineral regime during 7.1 to 6.3 ka BP, heaving commenced 6 ka BP. A number of 8 14C dates from 5.6 to 2.7 ka BP obtained from peat of 3 m high palsa. Near Abez’ Settlement palsa development began about 2.8 ka BP. There are both large and smaller palsas. Low-moor peat of 3.5 m high palsa is dated between 9180 BP to 6730 BP near Nikita Settlement. In Vorkuta area near Khanovey Settlement the northern most palsa is found. The 14C age of peat at slope of the palsa is much younger, than in an axial part, there is inversion of the dates: the date 3.5 ka BP is between dates 2.9 and 2.8 ka BP. It is probably caused by creep of peat downwards from a summit. This evidenced this frozen mound is real palsa, but not a residual form as a result of erosion.
format Article in Journal/Newspaper
author Yurij Vasil’chuk
Alla Vasil’chuk
Högne Jungner
Nadine Budantseva
Julia Chizhova
author_facet Yurij Vasil’chuk
Alla Vasil’chuk
Högne Jungner
Nadine Budantseva
Julia Chizhova
author_sort Yurij Vasil’chuk
title RADIOCARBON CHRONOLOGY OF HOLOCENE PALSA OF BOL’SHEZEMEL’SKAYA TUNDRA IN RUSSIAN NORTH
title_short RADIOCARBON CHRONOLOGY OF HOLOCENE PALSA OF BOL’SHEZEMEL’SKAYA TUNDRA IN RUSSIAN NORTH
title_full RADIOCARBON CHRONOLOGY OF HOLOCENE PALSA OF BOL’SHEZEMEL’SKAYA TUNDRA IN RUSSIAN NORTH
title_fullStr RADIOCARBON CHRONOLOGY OF HOLOCENE PALSA OF BOL’SHEZEMEL’SKAYA TUNDRA IN RUSSIAN NORTH
title_full_unstemmed RADIOCARBON CHRONOLOGY OF HOLOCENE PALSA OF BOL’SHEZEMEL’SKAYA TUNDRA IN RUSSIAN NORTH
title_sort radiocarbon chronology of holocene palsa of bol’shezemel’skaya tundra in russian north
publisher Russian Geographical Society
publishDate 2013
url https://ges.rgo.ru/jour/article/view/139
https://doi.org/10.24057/2071-9388-2013-6-3-38-59
long_lat ENVELOPE(63.783,63.783,67.050,67.050)
ENVELOPE(61.783,61.783,66.533,66.533)
ENVELOPE(58.000,58.000,67.500,67.500)
ENVELOPE(63.617,63.617,67.300,67.300)
ENVELOPE(162.172,162.172,57.458,57.458)
geographic Nikita
Abez’
Bol’shezemel’skaya Tundra
Khanovey
Bugry
geographic_facet Nikita
Abez’
Bol’shezemel’skaya Tundra
Khanovey
Bugry
genre Antarctic and Alpine Research
Arctic
palsa
palsas
permafrost
Permafrost and Periglacial Processes
Polar Science
Polar Science
Russian North
Tundra
Vorkuta
genre_facet Antarctic and Alpine Research
Arctic
palsa
palsas
permafrost
Permafrost and Periglacial Processes
Polar Science
Polar Science
Russian North
Tundra
Vorkuta
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 6, No 3 (2013); 38-59
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/139/139
Ǻhman, R. (1976) The structure and morphology of minerogenic palsas in Northern Norway.
Biuletyn peryglacjalny, N 26, pp. 25–31.
Allard M., Rousseau L. (1999) The internal structure of a palsa and a peat plateau in the
Riviere Boniface Region, Quebec: inferences on the formation of ice segregation mounds.
Geograpie Physique et Quaternaire, vol. 53, N 3, pp. 373–387.
Barcan V.Sh. (2010). Stability of palsa at the southern margin of its distribution on the Kola
Peninsula. Polar Science, vol. 4, Iss. 3, pp. 489–495.
Blyakharchuk T.A., Sulerzhitsky L.D. (1999). Holocene vegetation and climatic changes in
the forest zone of Western Siberia according to pollen records from the extrazonal palsa
bog Bugristoye. The Holocene, N 9, Iss. 5, pp. 621–628.
Christensen T.R, Jackowicz-Korczyński M, Aurela M, Crill P, Heliasz M, Mastepanov M, Friborg
T. (2012). Monitoring the multi-year carbon balance of a subarctic palsa mire with
micrometeorological techniques. Ambio, vol. 41, Iss. 3, pp. 207–217.
Cyr S., Payette S. (2010). The origin and structure of wooded permafrost mounds at the
arctic treeline in eastern Canada. Plant Ecology & Diversity, vol. 3, N 1. P.35–46.
Farbrot H., Isaksen K., Etzelmüller B., Gisnås K. (2013). Ground Thermal Regime and Permafrost
Distribution under a Changing Climate in Northern Norway. Permafrost and
Periglacial Processes, vol. 24, N1, pp. 20–38.
Lewkowicz A.G., Coultish T.L. (2004). Beaver Damming and Palsa Dynamics in a Subarctic
Mountainous Environment, Wolf Creek, Yukon Territory, Canada. Arctic, Antarctic, and
Alpine Research, vol. 36, N 2, pp. 208–218.
Magnan G., Lavoie M., Payette S. (2012). Impact of fire on long-term vegetation dynamics of ombrotrophic
peatlands in northwestern Quebec, Canada. Quaternary Research, vol. 77, pp. 110–121.
Maksimova L.N., Ospennikov E.N. (2012). Evolution of mire systems and permafrost of Bolshezemelskaya
tundra in Holocene. Earth Cryosphere, vol. 16, N 3, pp. 53–61. (In Russian).
McLaughlin J., Webster K. (2013). Effects of a changing climate on peatlands in permafrost
zones: a literature review and application to Ontario’s Far North. Climate research report
CCRR-34.
Oksanen P.O., Kuhry P, Alekseeva R.N., Kanev V.V. (1998). Permafrost dynamicsat the Rogovaya
River peat plateau, Subarctic Russia In Permafrost. Seventh International Conference.
Proceedings. Yellowknife, Canada. Collection Nordicana, N 55, pp. 847–854.
Pissart A. (1983). Pingos et palses: Un essai de synthese des connaissances actuelles. In Mesoformen
des Reliefs im heutigen Periglazialraum. Bericht uber ein Symposium. H.Poser
and E.Schunke (Ed.). Abhandlungen der Akademie der Wissenschaften in Gottingen.
Mathematische - Phys. Klasse. Vandenhoeck and Ruprecht. 3 Folge, N 35, pp. 48–69.
Popov A.I. (1967). Cryogenic phenomena in the Eath Crust (cryolithology). Moscow Moscow
University press. 304 p. (In Russian).
Romanenko F.A., Garankina E.V. (2012). Permafrost formation and structure at the south
border of cryolithozone, the Kola Peninsula. Earth Cryosphere, vol. 16, N 3, pp. 72–80.
(In Russian).
Salonen J.S., Seppa H., Valiranta M., Jones V.J., Self A., Heikkila M., Seija Kultti S., Yang H.
(2011). The Holocene thermal maximum and late-Holocene cooling in the tundra of NE
European Russia. Quaternary Research, vol. 75, Iss. 4, pp. 100–111.
Seppälä M. (1971). Evolution of eolian relief of the Kaamasjoki-Kiellajoki River basin in
Finnish Lapland. Fennia, N 104, pp. 1–88.
Seppälä M. (1986). Origin of palsas. Geografiska Annaler. Ser.A. Physical geography, vol.
A, N 3, pp. 141–147.
Seppälä M. (2011). Synthesis of studies of palsa formation underlining the importance of
local environmental and physical characteristics. Quaternary Research, vol. 75, pp. 366–370.
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2013-6-3-38-59
container_title GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
container_volume 6
container_issue 3
container_start_page 38
op_container_end_page 59
_version_ 1766287029476261888
spelling ftjges:oai:oai.gesj.elpub.ru:article/139 2023-05-15T14:14:42+02:00 RADIOCARBON CHRONOLOGY OF HOLOCENE PALSA OF BOL’SHEZEMEL’SKAYA TUNDRA IN RUSSIAN NORTH Yurij Vasil’chuk Alla Vasil’chuk Högne Jungner Nadine Budantseva Julia Chizhova 2013-09-01 application/pdf https://ges.rgo.ru/jour/article/view/139 https://doi.org/10.24057/2071-9388-2013-6-3-38-59 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/139/139 Ǻhman, R. (1976) The structure and morphology of minerogenic palsas in Northern Norway. Biuletyn peryglacjalny, N 26, pp. 25–31. Allard M., Rousseau L. (1999) The internal structure of a palsa and a peat plateau in the Riviere Boniface Region, Quebec: inferences on the formation of ice segregation mounds. Geograpie Physique et Quaternaire, vol. 53, N 3, pp. 373–387. Barcan V.Sh. (2010). Stability of palsa at the southern margin of its distribution on the Kola Peninsula. Polar Science, vol. 4, Iss. 3, pp. 489–495. Blyakharchuk T.A., Sulerzhitsky L.D. (1999). Holocene vegetation and climatic changes in the forest zone of Western Siberia according to pollen records from the extrazonal palsa bog Bugristoye. The Holocene, N 9, Iss. 5, pp. 621–628. Christensen T.R, Jackowicz-Korczyński M, Aurela M, Crill P, Heliasz M, Mastepanov M, Friborg T. (2012). Monitoring the multi-year carbon balance of a subarctic palsa mire with micrometeorological techniques. Ambio, vol. 41, Iss. 3, pp. 207–217. Cyr S., Payette S. (2010). The origin and structure of wooded permafrost mounds at the arctic treeline in eastern Canada. Plant Ecology & Diversity, vol. 3, N 1. P.35–46. Farbrot H., Isaksen K., Etzelmüller B., Gisnås K. (2013). Ground Thermal Regime and Permafrost Distribution under a Changing Climate in Northern Norway. Permafrost and Periglacial Processes, vol. 24, N1, pp. 20–38. Lewkowicz A.G., Coultish T.L. (2004). Beaver Damming and Palsa Dynamics in a Subarctic Mountainous Environment, Wolf Creek, Yukon Territory, Canada. Arctic, Antarctic, and Alpine Research, vol. 36, N 2, pp. 208–218. Magnan G., Lavoie M., Payette S. (2012). Impact of fire on long-term vegetation dynamics of ombrotrophic peatlands in northwestern Quebec, Canada. Quaternary Research, vol. 77, pp. 110–121. Maksimova L.N., Ospennikov E.N. (2012). Evolution of mire systems and permafrost of Bolshezemelskaya tundra in Holocene. Earth Cryosphere, vol. 16, N 3, pp. 53–61. (In Russian). McLaughlin J., Webster K. (2013). Effects of a changing climate on peatlands in permafrost zones: a literature review and application to Ontario’s Far North. Climate research report CCRR-34. Oksanen P.O., Kuhry P, Alekseeva R.N., Kanev V.V. (1998). Permafrost dynamicsat the Rogovaya River peat plateau, Subarctic Russia In Permafrost. Seventh International Conference. Proceedings. Yellowknife, Canada. Collection Nordicana, N 55, pp. 847–854. Pissart A. (1983). Pingos et palses: Un essai de synthese des connaissances actuelles. In Mesoformen des Reliefs im heutigen Periglazialraum. Bericht uber ein Symposium. H.Poser and E.Schunke (Ed.). Abhandlungen der Akademie der Wissenschaften in Gottingen. Mathematische - Phys. Klasse. Vandenhoeck and Ruprecht. 3 Folge, N 35, pp. 48–69. Popov A.I. (1967). Cryogenic phenomena in the Eath Crust (cryolithology). Moscow Moscow University press. 304 p. (In Russian). Romanenko F.A., Garankina E.V. (2012). Permafrost formation and structure at the south border of cryolithozone, the Kola Peninsula. Earth Cryosphere, vol. 16, N 3, pp. 72–80. (In Russian). Salonen J.S., Seppa H., Valiranta M., Jones V.J., Self A., Heikkila M., Seija Kultti S., Yang H. (2011). The Holocene thermal maximum and late-Holocene cooling in the tundra of NE European Russia. Quaternary Research, vol. 75, Iss. 4, pp. 100–111. Seppälä M. (1971). Evolution of eolian relief of the Kaamasjoki-Kiellajoki River basin in Finnish Lapland. Fennia, N 104, pp. 1–88. Seppälä M. (1986). Origin of palsas. Geografiska Annaler. Ser.A. Physical geography, vol. A, N 3, pp. 141–147. Seppälä M. (2011). Synthesis of studies of palsa formation underlining the importance of local environmental and physical characteristics. Quaternary Research, vol. 75, pp. 366–370. Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 6, No 3 (2013); 38-59 2542-1565 2071-9388 palsa;permafrost;mires;North-Eastern Europe;radiocarbon info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2013 ftjges https://doi.org/10.24057/2071-9388-2013-6-3-38-59 2021-05-21T07:34:00Z Six palsa mire in Usa River valley and in Vorkuta area in North-eastern part of European Russia were studied in detail. In total 75 new 14C dates from different palsa sections were obtained. In palsa mire near Bugry Settlement 3.2 m high palsa dated from 8.6 to 2.1 ka BP. The permafrost and palsa began 2.1 ka BP. In palsa mire near Usa Settlement low moor peat in 2 m high palsa dated 3690 BP, palsa began to heave at least 3700 BP. A low-moor peat of 2.5 m high palsa indicates the change in the hydrological-mineral regime during 7.1 to 6.3 ka BP, heaving commenced 6 ka BP. A number of 8 14C dates from 5.6 to 2.7 ka BP obtained from peat of 3 m high palsa. Near Abez’ Settlement palsa development began about 2.8 ka BP. There are both large and smaller palsas. Low-moor peat of 3.5 m high palsa is dated between 9180 BP to 6730 BP near Nikita Settlement. In Vorkuta area near Khanovey Settlement the northern most palsa is found. The 14C age of peat at slope of the palsa is much younger, than in an axial part, there is inversion of the dates: the date 3.5 ka BP is between dates 2.9 and 2.8 ka BP. It is probably caused by creep of peat downwards from a summit. This evidenced this frozen mound is real palsa, but not a residual form as a result of erosion. Article in Journal/Newspaper Antarctic and Alpine Research Arctic palsa palsas permafrost Permafrost and Periglacial Processes Polar Science Polar Science Russian North Tundra Vorkuta Geography, Environment, Sustainability (E-Journal) Nikita ENVELOPE(63.783,63.783,67.050,67.050) Abez’ ENVELOPE(61.783,61.783,66.533,66.533) Bol’shezemel’skaya Tundra ENVELOPE(58.000,58.000,67.500,67.500) Khanovey ENVELOPE(63.617,63.617,67.300,67.300) Bugry ENVELOPE(162.172,162.172,57.458,57.458) GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 6 3 38 59