RECOVERY FROM THE LITTLE ICE AGE: GEOTHERMAL EVIDENCES

We applied geothermal method for paleoclimatic reconstruction of the ground surface temperature history during the Little Ice Age and contemporary warming. We analyzed 83 borehole temperature profiles and estimated warming amplitudes and warming start dates after the Little Ice Age. The studied bore...

Full description

Bibliographic Details
Published in:GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
Main Authors: Anastasia Gornostayeva, Dmitry Demezhko
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2013
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/119
https://doi.org/10.24057/2071-9388-2013-6-1-60-70
id ftjges:oai:oai.gesj.elpub.ru:article/119
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic paleoclimate
ground surface temperature history (GSTH)
Little Ice Age (LIA)
Urals
Eastern Europe
borehole temperature-depth profile
geothermal method
spatial distribution of paleoclimatic changes
spellingShingle paleoclimate
ground surface temperature history (GSTH)
Little Ice Age (LIA)
Urals
Eastern Europe
borehole temperature-depth profile
geothermal method
spatial distribution of paleoclimatic changes
Anastasia Gornostayeva
Dmitry Demezhko
RECOVERY FROM THE LITTLE ICE AGE: GEOTHERMAL EVIDENCES
topic_facet paleoclimate
ground surface temperature history (GSTH)
Little Ice Age (LIA)
Urals
Eastern Europe
borehole temperature-depth profile
geothermal method
spatial distribution of paleoclimatic changes
description We applied geothermal method for paleoclimatic reconstruction of the ground surface temperature history during the Little Ice Age and contemporary warming. We analyzed 83 borehole temperature profiles and estimated warming amplitudes and warming start dates after the Little Ice Age. The studied boreholes are situated in the Urals and Eastern Europe (Finland, Ukraine, and Belarus). Our investigation shows high degree of spatial variability of climatic changes in 18–19 centuries. Spatial distribution of amplitudes of paleoclimatic changes and warming start date testifies that warming following after the Little Ice Age was in progress in several steps and for different regions it started at different times.
format Article in Journal/Newspaper
author Anastasia Gornostayeva
Dmitry Demezhko
author_facet Anastasia Gornostayeva
Dmitry Demezhko
author_sort Anastasia Gornostayeva
title RECOVERY FROM THE LITTLE ICE AGE: GEOTHERMAL EVIDENCES
title_short RECOVERY FROM THE LITTLE ICE AGE: GEOTHERMAL EVIDENCES
title_full RECOVERY FROM THE LITTLE ICE AGE: GEOTHERMAL EVIDENCES
title_fullStr RECOVERY FROM THE LITTLE ICE AGE: GEOTHERMAL EVIDENCES
title_full_unstemmed RECOVERY FROM THE LITTLE ICE AGE: GEOTHERMAL EVIDENCES
title_sort recovery from the little ice age: geothermal evidences
publisher Russian Geographical Society
publishDate 2013
url https://ges.rgo.ru/jour/article/view/119
https://doi.org/10.24057/2071-9388-2013-6-1-60-70
genre Arctic
genre_facet Arctic
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 6, No 1 (2013); 29-36
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/119/120
Beltrami H., Gosselin C., and Mareschal J.C. (2003) Ground surface temperatures
in Canada: Spatial and temporal variability. Geophys. Res. Lett., 30 (10), 1499,
doi:10.1029/2003L017144.
Beltrami H., and Mareshal J.-C. (1991) Recent warming in eastern Canada inferred from
geothermal measurements. Geophys. Res. Lett., vol. 18, N4:605–608.
Carslaw H.S., Jaeger J.C. (1959) Conduction of Heat in Solids. 2nd edn. Oxford Univ. Press,
New York, 510 pp.
Cermak V., Bodri L., Safanda J. (1992) Underground temperature fields and changing climate:
evidence from Cuba. Paleogeogr. Paleoclim. Paleoecol., 97, p. 325–327.
Demezhko D.Yu., and Golovanova I.V. (2007) Climatic changes in the Urals over the past
millennium – an analysis of geothermal and meteorological data. Climate of the Past, 3,
p. 237–242 (http://222.clim-past.net/3/237/2007/cp-3-237-2007.html).
Demezhko D.Yu., and Shchapov V.A. (2001) 80,000 years ground surface temperature history
inferred from the temperature-depth log measured in the superdeep hole SG-4 (the
Urals, Russia). Glob. and Planet. Change, 29, p. 219–230.
Huang, S. and Pollack, H.N. (1998) Global Borehole Temperature Database for Climate
Reconstruction. IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution
Series #1998-044. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA. (http://
www.geo.lsa.umich.edu/climate/).
Kotlovanova A.A. (2011) Influence of thermal effusivity on propagation of temperature
waves in subsurface. XII Ural youth scientific school on geophysics: Collection of scientific
papers. – Perm, UB RAS, p. 119–122. (in Russian).
Lachenbruch A.H., and Marshall B.V. (1986) Changing climate: geothermal evidences from
permafrost in the Alaskan Arctic. Science, 234, p. 689–696.
Ljungqvist F. C., Krusic P. J., Brattstrom G., and H. S. Sundqvist (2012) Northern Hemisphere
temperature patterns in the last 12 centuries // Clim. Past, 8, p. 227–249.
Majorowicz J. (2010) The Climate of Europe in Recent Centuries in the Context of the Climate
of Mid to High Latitude Northern Hemisphere from Borehole Temperature Logs / In: Przybylak,
R.; Majorowicz, J.; Brázdil, R.; Kejan, M. (Eds.). The Polish Climate in the European Context:
An Historical Overview. Springer Verlag, 1, p. 103–126, DOI:10.1007/978-90-481-3167-9_4.
https://ges.rgo.ru/jour/article/view/119
doi:10.24057/2071-9388-2013-6-1-60-70
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2013-6-1-60-70
https://doi.org/10.1029/2003L017144
https://doi.org/10.1007/978-90-481-3167-9_4
container_title GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
container_volume 6
container_issue 1
container_start_page 29
op_container_end_page 36
_version_ 1766302476325093376
spelling ftjges:oai:oai.gesj.elpub.ru:article/119 2023-05-15T14:28:18+02:00 RECOVERY FROM THE LITTLE ICE AGE: GEOTHERMAL EVIDENCES Anastasia Gornostayeva Dmitry Demezhko 2013-03-01 application/pdf https://ges.rgo.ru/jour/article/view/119 https://doi.org/10.24057/2071-9388-2013-6-1-60-70 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/119/120 Beltrami H., Gosselin C., and Mareschal J.C. (2003) Ground surface temperatures in Canada: Spatial and temporal variability. Geophys. Res. Lett., 30 (10), 1499, doi:10.1029/2003L017144. Beltrami H., and Mareshal J.-C. (1991) Recent warming in eastern Canada inferred from geothermal measurements. Geophys. Res. Lett., vol. 18, N4:605–608. Carslaw H.S., Jaeger J.C. (1959) Conduction of Heat in Solids. 2nd edn. Oxford Univ. Press, New York, 510 pp. Cermak V., Bodri L., Safanda J. (1992) Underground temperature fields and changing climate: evidence from Cuba. Paleogeogr. Paleoclim. Paleoecol., 97, p. 325–327. Demezhko D.Yu., and Golovanova I.V. (2007) Climatic changes in the Urals over the past millennium – an analysis of geothermal and meteorological data. Climate of the Past, 3, p. 237–242 (http://222.clim-past.net/3/237/2007/cp-3-237-2007.html). Demezhko D.Yu., and Shchapov V.A. (2001) 80,000 years ground surface temperature history inferred from the temperature-depth log measured in the superdeep hole SG-4 (the Urals, Russia). Glob. and Planet. Change, 29, p. 219–230. Huang, S. and Pollack, H.N. (1998) Global Borehole Temperature Database for Climate Reconstruction. IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution Series #1998-044. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA. (http:// www.geo.lsa.umich.edu/climate/). Kotlovanova A.A. (2011) Influence of thermal effusivity on propagation of temperature waves in subsurface. XII Ural youth scientific school on geophysics: Collection of scientific papers. – Perm, UB RAS, p. 119–122. (in Russian). Lachenbruch A.H., and Marshall B.V. (1986) Changing climate: geothermal evidences from permafrost in the Alaskan Arctic. Science, 234, p. 689–696. Ljungqvist F. C., Krusic P. J., Brattstrom G., and H. S. Sundqvist (2012) Northern Hemisphere temperature patterns in the last 12 centuries // Clim. Past, 8, p. 227–249. Majorowicz J. (2010) The Climate of Europe in Recent Centuries in the Context of the Climate of Mid to High Latitude Northern Hemisphere from Borehole Temperature Logs / In: Przybylak, R.; Majorowicz, J.; Brázdil, R.; Kejan, M. (Eds.). The Polish Climate in the European Context: An Historical Overview. Springer Verlag, 1, p. 103–126, DOI:10.1007/978-90-481-3167-9_4. https://ges.rgo.ru/jour/article/view/119 doi:10.24057/2071-9388-2013-6-1-60-70 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 6, No 1 (2013); 29-36 2542-1565 2071-9388 paleoclimate ground surface temperature history (GSTH) Little Ice Age (LIA) Urals Eastern Europe borehole temperature-depth profile geothermal method spatial distribution of paleoclimatic changes info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2013 ftjges https://doi.org/10.24057/2071-9388-2013-6-1-60-70 https://doi.org/10.1029/2003L017144 https://doi.org/10.1007/978-90-481-3167-9_4 2021-05-21T07:34:48Z We applied geothermal method for paleoclimatic reconstruction of the ground surface temperature history during the Little Ice Age and contemporary warming. We analyzed 83 borehole temperature profiles and estimated warming amplitudes and warming start dates after the Little Ice Age. The studied boreholes are situated in the Urals and Eastern Europe (Finland, Ukraine, and Belarus). Our investigation shows high degree of spatial variability of climatic changes in 18–19 centuries. Spatial distribution of amplitudes of paleoclimatic changes and warming start date testifies that warming following after the Little Ice Age was in progress in several steps and for different regions it started at different times. Article in Journal/Newspaper Arctic Geography, Environment, Sustainability (E-Journal) GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 6 1 29 36