Mapping temperature and precipitation extremes under changing climate (on the example of The Ural region, Russia)

The paper presents a series of maps of extreme climatic characteristics for the Ural region and their changes under climate warming observed in last decades. We calculate threshold, absolute and percentile-based indices with the use of daily temperature and precipitation dataset of 99 weather statio...

Full description

Bibliographic Details
Published in:Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya.
Main Authors: Andrey Shikhov N., Rinat Abdullin K., Andrey Tarasov V.
Other Authors: This study was funded by the RFBR project No 18-35-00055 mol-a and RF President Grant MK-313.2020.5.
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2020
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/1170
https://doi.org/10.24057/2071-9388-2019-42
id ftjges:oai:oai.gesj.elpub.ru:article/1170
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic climatic extremes;extreme temperature and precipitation indices;mapping;regression-based interpolation;Ural region
spellingShingle climatic extremes;extreme temperature and precipitation indices;mapping;regression-based interpolation;Ural region
Andrey Shikhov N.
Rinat Abdullin K.
Andrey Tarasov V.
Mapping temperature and precipitation extremes under changing climate (on the example of The Ural region, Russia)
topic_facet climatic extremes;extreme temperature and precipitation indices;mapping;regression-based interpolation;Ural region
description The paper presents a series of maps of extreme climatic characteristics for the Ural region and their changes under climate warming observed in last decades. We calculate threshold, absolute and percentile-based indices with the use of daily temperature and precipitation dataset of 99 weather stations of Roshydromet. Extreme climatic characteristics were averaged by moving 30-year periods from 1951 to 2010 for temperature and from 1966 to 2015 for precipitation. The regression-based interpolation was used for mapping climatic extremes taking into consideration the influence of topography. Elevation and general curvature of the terrain are considered as independent variables. In addition, the changes of extreme characteristics between the 30-year periods were estimated. As a result, a series of maps of temperature and precipitation extremes for the Ural region has been created. The maps present not only spatial distribution of the climatic extremes, but also regional features of their changes under climate warming. In general, the revealed changes in extremes in the Ural region correspond to the trends observed on the most of the territory of Russia. There is a substantial decrease of the number of extremely cold days in winter, and the minimum winter temperature has a strong positive trend (up to 1-5°C/30 years). The maximum temperature in summer has a positive trend in most of the territory, but the increase rate does not exceed 2°C between 1951–1980 and 1981–2010. The precipitation extremes also increased up to 0.5-1.5 mm when comparing 1966–1995 and 1985–2015 periods.
author2 This study was funded by the RFBR project No 18-35-00055 mol-a and RF President Grant MK-313.2020.5.
format Article in Journal/Newspaper
author Andrey Shikhov N.
Rinat Abdullin K.
Andrey Tarasov V.
author_facet Andrey Shikhov N.
Rinat Abdullin K.
Andrey Tarasov V.
author_sort Andrey Shikhov N.
title Mapping temperature and precipitation extremes under changing climate (on the example of The Ural region, Russia)
title_short Mapping temperature and precipitation extremes under changing climate (on the example of The Ural region, Russia)
title_full Mapping temperature and precipitation extremes under changing climate (on the example of The Ural region, Russia)
title_fullStr Mapping temperature and precipitation extremes under changing climate (on the example of The Ural region, Russia)
title_full_unstemmed Mapping temperature and precipitation extremes under changing climate (on the example of The Ural region, Russia)
title_sort mapping temperature and precipitation extremes under changing climate (on the example of the ural region, russia)
publisher Russian Geographical Society
publishDate 2020
url https://ges.rgo.ru/jour/article/view/1170
https://doi.org/10.24057/2071-9388-2019-42
genre Arctic
genre_facet Arctic
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 13, No 2 (2020); 154-165
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/1170/476
Abdullin R.K. and Shikhov A.N. (2017). GIS based modelling of spatial and temporal distribution of severe weather events. Geodesy and Cartography = Geodezija i kartografija, 78(2), 26-32 (in Russian with English summary), DOI:10.22389/0016-7126-2017-920-2-26-32.
Abdullin R.K. and Shikhov A.N. (2019). Mapping of current climate changes in the Ural. Geodesy and Cartography = Geodezija i kartografija, 80(1), 3-12 (in Russian with English summary), DOI:10.22389/0016-7126-2019-943-1-3-12.
Alexander L., Zhang X., Peterson T., Caesar J., Gleason B., Klein Tank A., Haylock M., Collins D., Trewin B., Rahimzadeh F., Tagipour A., Rupa Kumar K., Revadekar J., Griffiths G., Vincent L., Stephenson D., Burn J., Aguilar E., Brunet M., Taylor M., New M., Zhai P., Rusticucci M. and Vazquez-Aguirre J. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111, D05109, DOI:10.1029/2005JD006290.
Bardin M.Yu. and Platova T.V. (2013). Changes in thresholds of extreme temperatures and precipitation on territory of Russia with global warming. Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem, 2013, 25, 71-93 (in Russian with English summary).
Beguería S. and Vicente-Serrano S.M. (2005). Mapping the hazard of extreme rainfall by peaks over threshold extreme value analysis and spatial regression techniques. Journal of Applied Meteorology and Climatology, 45(1), 108-124, DOI:10.1175/JAM2324.1.
Beguería S., Vicente-Serrano S.M., López-Moreno J.I. and García-Ruiz J.M. (2009). Annual and seasonal mapping of peak intensity, magnitude and duration of extreme precipitation events across a climatic gradient, northeast Spain. International Journal of Climatology, 29(12), 1759-1779, DOI:10.1002/joc.1808.
Blennow K. and Persson P. (1998). Modelling local-scale frost variations using mobile temperature measurements with a GIS. Agricultural and Forest Meteorology, 89, 59-71, DOI:10.1016/S0168-1923(97)00057-9.
Brown D.P. and Comrie A.C. (2002). Spatial modeling of winter temperature and precipitation in Arizona and New Mexico, USA. Climate Research, 22, 115-128, DOI:10.3354/cr022115.
Bulygina O., Razuvaev V., Korshunova N. and Groisman P. (2007). Climate variations and changes in extreme climate events in Russia. Environmental Research Letters, 2(4), 045020, DOI:10.1088/1748-9326/2/4/045020.
Cherenkova E.A. (2017). Dangerous atmospheric drought in European Russia under recent summer warming. Fundamental and Applied Climatology, 2, 130-143 (in Russian with English summary), DOI:10.21513/2410-8758-2017-2-130-143.
Chernokulsky A.V., Kozlov F.A., Semenov V.A., Zolina O.G. and Bulygina O.N. (2018). Climatology of precipitation of different genesis in Northern Eurasia. Russian Meteorology and Hydrology, 43(7), 425-435, DOI:10.3103/S1068373918070014.
Danielson J.J. and Gesch D.B. (2011). Global multi-resolution terrain elevation data 2010 (GMTED2010): U.S. Geological Survey Open-File Report 2011–1073, 26 p.
Donat M.G., Alexander L.V., Yang H., Durre I., Vose R., Dunn R.J.H., Willett K.M., Aguilar E., Brunet M., Caesar J., Hewitson B., Jack C., Klein Tank A.M.G., Kruger A.C., Marengo J., Peterson T.C., Renom M., Oria Rojas C., Rusticucci M., Salinger J., Elrayah A.S., Sekele S.S., Srivastava A.K., Trewin B., Villarroel C., Vincent L.A., Zhai P., Zhang X. and Kitching S. (2013). Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. Journal of Geophysical Research Atmospheres, 118(5), 2098-2118, DOI:10.1002/jgrd.50150.
Donat M.G., Alexander L.V., Yang H., Durre I., Vose R. and Caesar J. (2013). Global land-based datasets for monitoring climatic extremes. Bulletin of American Meteorological Society, 94(7), 997-1006, DOI:10.1175/BAMS-D-12-00109.1.
Fick S.E. and Hijmans R.J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315, DOI:10.1002/joc.5086.
Frich P., Alexander L., Della-Marta P., Gleason B., Haylock M., Klein Tank A. and Peterson T. (2002). Observed coherent changes in climatic extremes during the second half of the 20th century. Climate Research, 19, 193-212, DOI:10.3354/cr019193.
Goodale C.L., Aber J.D. and Ollinger S.V. (1998). Mapping monthly precipitation, temperature and solar radiation from Ireland with polynomial regression and a digital elevation model. Climate Research, 10, 35-49, DOI:10.3354/cr010035.
Goovaerts P (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228, 113-129, DOI:10.1016/S0022-1694(00)00144-X.
Groisman P., Knight R., Easterling D., Karl T., Hegerl G. and Razuvaev V. (2005). Trends in intense precipitation in the climate record. Journal of Climate, 18, 1326-1350, DOI:10.1175/JCLI3339.1.
Groisman P.Y. and Soja A.J. (2009). Ongoing climatic change in Northern Eurasia: justification for expedient research. Environmental Research Letters, 4, 045002, DOI:10.1088/1748-9326/4/4/045002.
Kiktev D.B., Caesar J. and Alexander L. (2009). Temperature and precipitation extremes in the second half of the twentieth century from numerical modeling results and observational data. Izvestiya RAN. Fizika atmosfery i okeana, 45(3), 305-315 (in Russian with English summary), DOI:10.1134/S0001433809030025.
Kim K.-Y., Kim J.-Y., Kim J., Yeo S., Na H., Hamlington B.D. and Leben R.R. (2019). Vertical Feedback Mechanism of Winter Arctic Amplification and Sea Ice Loss. Scientific Reports, 9(1), Art. no. 1184, DOI:10.1038/s41598-018-38109-x.
Li L. and Zha Y. (2018). Mapping relative humidity, average and extreme temperature in hot summer over China. Science of the Total Environment, 615, 875-881, DOI:10.1016/j.scitotenv.2017.10.022.
Mokhov I.I., Semenov V.A. (2016). Weather and Climate Anomalies in Russian Regions Related to Global Climate Change. Russian Meteorology and Hydrology, 41(2), 84-92, DOI:10.3103/S1068373916020023.
Ninyerola M., Pons X. and Roure J.M. (2000). A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. International Journal of Climatology, 20, 1823-1841, DOI:10.1002/1097-0088(20001130)20:14<1823.
Perevedentsev Yu.P., Sokolov V.V. and Naumov E.P. (2013). Climate and environment of the Privoljsky Federal District. Kazan, Kazan Federal University (in Russian).
Pyankov S.V., Shikhov A.N. and Abdullin R.K. (2017). Modern methods and technologies in thematic atlas mapping (on the example of the AIS «Hazardous hydro-meteorological events of the Ural Prikamye region»). Challenges in Geography = Voprosy Geografii, 144, 208-226 (in Russian with English summary).
Screen J.A. (2014). Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nature Climate Change, 4, 577-582, DOI:10.1038/nclimate2268.
Shikhov A.N., Perminova E.S. and Perminov S.I. (2019). Satellite-based analysis of the spatial patterns of fire and storm-related forest disturbances in the Ural region, Russia, Natural Hazards, 97(1), 283-308, DOI:10.1007/s11069-019-03642-z.
Shutov V.A. (1998). Investigations, analyses and modeling of different scaled spatial variability of snow storage. Izvestiya, Seriya Geograficheskaya, 1, 122-132 (in Russian with English summary).
Titkova T.B., Cherenkova E.A. and Semenov V.A. (2018). Regional features of changes in winter extreme temperatures and precipitation in Russia in 1970–2015. Led i Sneg, 58(4), 486-497 (In Russian with English summary), DOI:10.15356/2076-6734-2018-4-486-497.
Vicente-Serrano S.M., Saz-Sánchez M.A. and Cuadrat J.M. (2003). Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): Application to annual precipitation and temperature. Climate Research, 24(2), 161-180, DOI:10.3354/cr024161.
Weisse A.K. and Bois P. (2002). A comparison of methods for mapping statistical characteristics of heavy rainfall in the French Alps: the use of daily information. Hydrological Sciences Journal, 47(5), 739-752, DOI:10.1080/02626660209492977.
Zolina O. and Bulygina O. (2016). Current climatic variability of extreme precipitation in Russia. Fundamental and Applied Climatology, 1, 84-103 (in Russian with English summary), DOI:10.21513/2410-8758-2016-1-84-103.
Zolotokrylin A.N. and Cherenkova E.A. (2017). Seasonal changes in precipitation extremes in Russia for the last several decades and their impact on vital activities of the human population. Geography, Environment, Sustainability, 10(4), 69-82, DOI:10.24057/2071-9388-2017-10-4-69-82.
https://ges.rgo.ru/jour/article/view/1170
doi:10.24057/2071-9388-2019-42
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2019-42
https://doi.org/10.22389/0016-7126-2017-920-2-26-32
https://doi.org/10.22389/0016-7126-2019-943-1-3-12
https://doi.org/10.1029/2005JD006290
https://doi.org/10.1175/JAM2324.1
https://doi.org/10.1002/joc.
container_title Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya.
container_issue 1
container_start_page 62
op_container_end_page 73
_version_ 1766302545745018880
spelling ftjges:oai:oai.gesj.elpub.ru:article/1170 2023-05-15T14:28:22+02:00 Mapping temperature and precipitation extremes under changing climate (on the example of The Ural region, Russia) Andrey Shikhov N. Rinat Abdullin K. Andrey Tarasov V. This study was funded by the RFBR project No 18-35-00055 mol-a and RF President Grant MK-313.2020.5. 2020-06-24 application/pdf https://ges.rgo.ru/jour/article/view/1170 https://doi.org/10.24057/2071-9388-2019-42 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/1170/476 Abdullin R.K. and Shikhov A.N. (2017). GIS based modelling of spatial and temporal distribution of severe weather events. Geodesy and Cartography = Geodezija i kartografija, 78(2), 26-32 (in Russian with English summary), DOI:10.22389/0016-7126-2017-920-2-26-32. Abdullin R.K. and Shikhov A.N. (2019). Mapping of current climate changes in the Ural. Geodesy and Cartography = Geodezija i kartografija, 80(1), 3-12 (in Russian with English summary), DOI:10.22389/0016-7126-2019-943-1-3-12. Alexander L., Zhang X., Peterson T., Caesar J., Gleason B., Klein Tank A., Haylock M., Collins D., Trewin B., Rahimzadeh F., Tagipour A., Rupa Kumar K., Revadekar J., Griffiths G., Vincent L., Stephenson D., Burn J., Aguilar E., Brunet M., Taylor M., New M., Zhai P., Rusticucci M. and Vazquez-Aguirre J. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111, D05109, DOI:10.1029/2005JD006290. Bardin M.Yu. and Platova T.V. (2013). Changes in thresholds of extreme temperatures and precipitation on territory of Russia with global warming. Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem, 2013, 25, 71-93 (in Russian with English summary). Beguería S. and Vicente-Serrano S.M. (2005). Mapping the hazard of extreme rainfall by peaks over threshold extreme value analysis and spatial regression techniques. Journal of Applied Meteorology and Climatology, 45(1), 108-124, DOI:10.1175/JAM2324.1. Beguería S., Vicente-Serrano S.M., López-Moreno J.I. and García-Ruiz J.M. (2009). Annual and seasonal mapping of peak intensity, magnitude and duration of extreme precipitation events across a climatic gradient, northeast Spain. International Journal of Climatology, 29(12), 1759-1779, DOI:10.1002/joc.1808. Blennow K. and Persson P. (1998). Modelling local-scale frost variations using mobile temperature measurements with a GIS. Agricultural and Forest Meteorology, 89, 59-71, DOI:10.1016/S0168-1923(97)00057-9. Brown D.P. and Comrie A.C. (2002). Spatial modeling of winter temperature and precipitation in Arizona and New Mexico, USA. Climate Research, 22, 115-128, DOI:10.3354/cr022115. Bulygina O., Razuvaev V., Korshunova N. and Groisman P. (2007). Climate variations and changes in extreme climate events in Russia. Environmental Research Letters, 2(4), 045020, DOI:10.1088/1748-9326/2/4/045020. Cherenkova E.A. (2017). Dangerous atmospheric drought in European Russia under recent summer warming. Fundamental and Applied Climatology, 2, 130-143 (in Russian with English summary), DOI:10.21513/2410-8758-2017-2-130-143. Chernokulsky A.V., Kozlov F.A., Semenov V.A., Zolina O.G. and Bulygina O.N. (2018). Climatology of precipitation of different genesis in Northern Eurasia. Russian Meteorology and Hydrology, 43(7), 425-435, DOI:10.3103/S1068373918070014. Danielson J.J. and Gesch D.B. (2011). Global multi-resolution terrain elevation data 2010 (GMTED2010): U.S. Geological Survey Open-File Report 2011–1073, 26 p. Donat M.G., Alexander L.V., Yang H., Durre I., Vose R., Dunn R.J.H., Willett K.M., Aguilar E., Brunet M., Caesar J., Hewitson B., Jack C., Klein Tank A.M.G., Kruger A.C., Marengo J., Peterson T.C., Renom M., Oria Rojas C., Rusticucci M., Salinger J., Elrayah A.S., Sekele S.S., Srivastava A.K., Trewin B., Villarroel C., Vincent L.A., Zhai P., Zhang X. and Kitching S. (2013). Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. Journal of Geophysical Research Atmospheres, 118(5), 2098-2118, DOI:10.1002/jgrd.50150. Donat M.G., Alexander L.V., Yang H., Durre I., Vose R. and Caesar J. (2013). Global land-based datasets for monitoring climatic extremes. Bulletin of American Meteorological Society, 94(7), 997-1006, DOI:10.1175/BAMS-D-12-00109.1. Fick S.E. and Hijmans R.J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315, DOI:10.1002/joc.5086. Frich P., Alexander L., Della-Marta P., Gleason B., Haylock M., Klein Tank A. and Peterson T. (2002). Observed coherent changes in climatic extremes during the second half of the 20th century. Climate Research, 19, 193-212, DOI:10.3354/cr019193. Goodale C.L., Aber J.D. and Ollinger S.V. (1998). Mapping monthly precipitation, temperature and solar radiation from Ireland with polynomial regression and a digital elevation model. Climate Research, 10, 35-49, DOI:10.3354/cr010035. Goovaerts P (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228, 113-129, DOI:10.1016/S0022-1694(00)00144-X. Groisman P., Knight R., Easterling D., Karl T., Hegerl G. and Razuvaev V. (2005). Trends in intense precipitation in the climate record. Journal of Climate, 18, 1326-1350, DOI:10.1175/JCLI3339.1. Groisman P.Y. and Soja A.J. (2009). Ongoing climatic change in Northern Eurasia: justification for expedient research. Environmental Research Letters, 4, 045002, DOI:10.1088/1748-9326/4/4/045002. Kiktev D.B., Caesar J. and Alexander L. (2009). Temperature and precipitation extremes in the second half of the twentieth century from numerical modeling results and observational data. Izvestiya RAN. Fizika atmosfery i okeana, 45(3), 305-315 (in Russian with English summary), DOI:10.1134/S0001433809030025. Kim K.-Y., Kim J.-Y., Kim J., Yeo S., Na H., Hamlington B.D. and Leben R.R. (2019). Vertical Feedback Mechanism of Winter Arctic Amplification and Sea Ice Loss. Scientific Reports, 9(1), Art. no. 1184, DOI:10.1038/s41598-018-38109-x. Li L. and Zha Y. (2018). Mapping relative humidity, average and extreme temperature in hot summer over China. Science of the Total Environment, 615, 875-881, DOI:10.1016/j.scitotenv.2017.10.022. Mokhov I.I., Semenov V.A. (2016). Weather and Climate Anomalies in Russian Regions Related to Global Climate Change. Russian Meteorology and Hydrology, 41(2), 84-92, DOI:10.3103/S1068373916020023. Ninyerola M., Pons X. and Roure J.M. (2000). A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. International Journal of Climatology, 20, 1823-1841, DOI:10.1002/1097-0088(20001130)20:14<1823. Perevedentsev Yu.P., Sokolov V.V. and Naumov E.P. (2013). Climate and environment of the Privoljsky Federal District. Kazan, Kazan Federal University (in Russian). Pyankov S.V., Shikhov A.N. and Abdullin R.K. (2017). Modern methods and technologies in thematic atlas mapping (on the example of the AIS «Hazardous hydro-meteorological events of the Ural Prikamye region»). Challenges in Geography = Voprosy Geografii, 144, 208-226 (in Russian with English summary). Screen J.A. (2014). Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nature Climate Change, 4, 577-582, DOI:10.1038/nclimate2268. Shikhov A.N., Perminova E.S. and Perminov S.I. (2019). Satellite-based analysis of the spatial patterns of fire and storm-related forest disturbances in the Ural region, Russia, Natural Hazards, 97(1), 283-308, DOI:10.1007/s11069-019-03642-z. Shutov V.A. (1998). Investigations, analyses and modeling of different scaled spatial variability of snow storage. Izvestiya, Seriya Geograficheskaya, 1, 122-132 (in Russian with English summary). Titkova T.B., Cherenkova E.A. and Semenov V.A. (2018). Regional features of changes in winter extreme temperatures and precipitation in Russia in 1970–2015. Led i Sneg, 58(4), 486-497 (In Russian with English summary), DOI:10.15356/2076-6734-2018-4-486-497. Vicente-Serrano S.M., Saz-Sánchez M.A. and Cuadrat J.M. (2003). Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): Application to annual precipitation and temperature. Climate Research, 24(2), 161-180, DOI:10.3354/cr024161. Weisse A.K. and Bois P. (2002). A comparison of methods for mapping statistical characteristics of heavy rainfall in the French Alps: the use of daily information. Hydrological Sciences Journal, 47(5), 739-752, DOI:10.1080/02626660209492977. Zolina O. and Bulygina O. (2016). Current climatic variability of extreme precipitation in Russia. Fundamental and Applied Climatology, 1, 84-103 (in Russian with English summary), DOI:10.21513/2410-8758-2016-1-84-103. Zolotokrylin A.N. and Cherenkova E.A. (2017). Seasonal changes in precipitation extremes in Russia for the last several decades and their impact on vital activities of the human population. Geography, Environment, Sustainability, 10(4), 69-82, DOI:10.24057/2071-9388-2017-10-4-69-82. https://ges.rgo.ru/jour/article/view/1170 doi:10.24057/2071-9388-2019-42 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 13, No 2 (2020); 154-165 2542-1565 2071-9388 climatic extremes;extreme temperature and precipitation indices;mapping;regression-based interpolation;Ural region info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2020 ftjges https://doi.org/10.24057/2071-9388-2019-42 https://doi.org/10.22389/0016-7126-2017-920-2-26-32 https://doi.org/10.22389/0016-7126-2019-943-1-3-12 https://doi.org/10.1029/2005JD006290 https://doi.org/10.1175/JAM2324.1 https://doi.org/10.1002/joc. 2021-05-21T07:34:11Z The paper presents a series of maps of extreme climatic characteristics for the Ural region and their changes under climate warming observed in last decades. We calculate threshold, absolute and percentile-based indices with the use of daily temperature and precipitation dataset of 99 weather stations of Roshydromet. Extreme climatic characteristics were averaged by moving 30-year periods from 1951 to 2010 for temperature and from 1966 to 2015 for precipitation. The regression-based interpolation was used for mapping climatic extremes taking into consideration the influence of topography. Elevation and general curvature of the terrain are considered as independent variables. In addition, the changes of extreme characteristics between the 30-year periods were estimated. As a result, a series of maps of temperature and precipitation extremes for the Ural region has been created. The maps present not only spatial distribution of the climatic extremes, but also regional features of their changes under climate warming. In general, the revealed changes in extremes in the Ural region correspond to the trends observed on the most of the territory of Russia. There is a substantial decrease of the number of extremely cold days in winter, and the minimum winter temperature has a strong positive trend (up to 1-5°C/30 years). The maximum temperature in summer has a positive trend in most of the territory, but the increase rate does not exceed 2°C between 1951–1980 and 1981–2010. The precipitation extremes also increased up to 0.5-1.5 mm when comparing 1966–1995 and 1985–2015 periods. Article in Journal/Newspaper Arctic Geography, Environment, Sustainability (E-Journal) Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 1 62 73