Heavy Metals In Marine Aerosols Of The Azov Sea
The content of heavy metals and Al in the aerosol matter over the Sea of Azov has been studied. According to the special test the vast majority of samples were attributed to the type of marine aerosol. The ranges of contents were determined as following: Fe (200 – 2000 ng/m3), Al (20 – 200 ng/m3), Z...
Published in: | RELIEVE - Revista Electrónica de Investigación y Evaluación Educativa |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Russian Geographical Society
2020
|
Subjects: | |
Online Access: | https://ges.rgo.ru/jour/article/view/1166 https://doi.org/10.24057/2071-9388-2020-11 |
id |
ftjges:oai:oai.gesj.elpub.ru:article/1166 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Geography, Environment, Sustainability (E-Journal) |
op_collection_id |
ftjges |
language |
English |
topic |
heavy metals;spatial distribution;aerosol;micro particles;sea surface microlayer;pollution;Don River;Taganrog Bay |
spellingShingle |
heavy metals;spatial distribution;aerosol;micro particles;sea surface microlayer;pollution;Don River;Taganrog Bay Marina Chichaeva A. Mikhail Lychagin Yu. Anton Syroeshkin V. Olga Chernitsova V. Heavy Metals In Marine Aerosols Of The Azov Sea |
topic_facet |
heavy metals;spatial distribution;aerosol;micro particles;sea surface microlayer;pollution;Don River;Taganrog Bay |
description |
The content of heavy metals and Al in the aerosol matter over the Sea of Azov has been studied. According to the special test the vast majority of samples were attributed to the type of marine aerosol. The ranges of contents were determined as following: Fe (200 – 2000 ng/m3), Al (20 – 200 ng/m3), Zn (10 – 280 ng/m3), Cu (2 – 23 ng/m3), Ni (1 – 16 ng/m3), Pb (3 -30 ng/m3), Cd (0.4 –2.8 ng/m3); Mn (3 – 23 ng/m3), Cr (1 – 15 ng/m3). The spatial distribution of HMs in the marine aerosol of the Sea of Azov depends on the influence of the river-sea geochemical barrier zone in the Taganrog Bay and the anthropogenic impact of the coastal industrial cities. HM concentrations decrease from the northern coast of the bay and the mouth of the Don River towards the open sea. The maximum HM content in marine aerosol observed in the mouth area of the Don River. It may be associated with the HM accumulation at the river-sea geochemical barrier, and also with the anthropogenic impact of the cities of Rostov-on-Don, Azov and Taganrog. Anthropogenic impact of the city of Mariupol cause the maximum values of Fe, Cr, and Cd in marine aerosol matter of the western part of the Taganrog Bay. |
format |
Article in Journal/Newspaper |
author |
Marina Chichaeva A. Mikhail Lychagin Yu. Anton Syroeshkin V. Olga Chernitsova V. |
author_facet |
Marina Chichaeva A. Mikhail Lychagin Yu. Anton Syroeshkin V. Olga Chernitsova V. |
author_sort |
Marina Chichaeva A. |
title |
Heavy Metals In Marine Aerosols Of The Azov Sea |
title_short |
Heavy Metals In Marine Aerosols Of The Azov Sea |
title_full |
Heavy Metals In Marine Aerosols Of The Azov Sea |
title_fullStr |
Heavy Metals In Marine Aerosols Of The Azov Sea |
title_full_unstemmed |
Heavy Metals In Marine Aerosols Of The Azov Sea |
title_sort |
heavy metals in marine aerosols of the azov sea |
publisher |
Russian Geographical Society |
publishDate |
2020 |
url |
https://ges.rgo.ru/jour/article/view/1166 https://doi.org/10.24057/2071-9388-2020-11 |
genre |
Antarctica Journal Arctic |
genre_facet |
Antarctica Journal Arctic |
op_source |
GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 13, No 2 (2020); 127-134 2542-1565 2071-9388 |
op_relation |
https://ges.rgo.ru/jour/article/view/1166/472 Akinori I., Myriokefalitakis S., Kanakidou M., Mahowald N. M., et al. (2019). Pyrogenic iron: The missing link to high iron solubility in aerosols. Science Advances, 5(5), 7671, DOI:10.1126/sciadv.aau7671 . Aryasree S, Nair PR, Girach IA, Jacob S. (2015). Winter time chemical characteristics of aerosols over the Bay of Bengal: continental influence. Environmental Science and Pollution Research, 22(19), 14901-14918, DOI:10.1007/s11356-015-4700-7. Brooks S.D., Thornton D.C. (2018). Marine Aerosols and Clouds. Annual Review of Marine Science, 3(10), 289-313, DOI:10.1146/annurevmarine-121916-063148. Buseck P. R., Posfai M. (1999) Airborne minerals and related aerosol particles: Effects on climate and the environment. Proceedings of the National Academy of Sciences, 96(7), 3372–3379, DOI:10.1073/pnas.96.7.3372. Chandrakar K.K., Cantrell W., Chang K., Ciochetto D., et al. (2016). Aerosol indirect effect from turbulence-induced broadening of clouddroplet size distributions. Proceedings of the National Academy of Sciences USA, 113(50), 14243-14248, DOI:10.1175/JAS-D-18-0006.1. Coquery M., Villeneuve J.P. (2001). Final report on the split sampling exercises and quality assurance activities. EU Project № ENV RM S9602, Amsterdam, ICWC, 51. Csavina J., Field J., Taylor M.P., Gao S., et al. (2012). A Review on the Importance of Metals and Metalloids in Atmospheric Dust and Aerosol from Mining Operations. Science of the Total Environment, 433, 58-73, DOI:10.1016/j.scitotenv.2012.06.013. Fleming L.E., Bean J.A., Kirkpatrick B., Cheng Y.S., et al. (2009). Exposure and effect assessment of aerosolized red tide toxins (brevetoxins) and asthma. Environmental Health Perspectives, 117(7), 1095-100. DOI:10.1289/ehp.0900673. Furness R.W. (2017). Heavy Metals in the Marine Environment. CRC press. Garrett W.D. (1965). Collection of slick-forming materials from the sea surface. // Limnol. Oceanog, 10, 602-605. . Georgoulias A.K., Alexandri G., Kourtidis K.A., Lelieveld J., et al. (2016). Spatiotemporal variability and contribution of different aerosol types to the Aerosol Optical Depth over the Eastern Mediterranean. Atmospheric Chemistry And Physics, 16(21), 13853-13884, DOI:10.5194/acp-1613853-2016. Golubeva N.I., Burtseva L.V., Gromov S.A. (2011). Heavy Metals in Atmospheric Air in the Kara Sea Water Area in September–October. Oceanology, 58, 870-878. DOI: doi.org/10.1134/S000143701806005X. Goncharuk V.V., Lapshin V.B., Chichaeva M.A., Samsoni-Todorov A.O., et al. (2012). Heavy metals, aluminum and arsenic in aerosols of the oceans. Chemistry and Water Technology, 34(1), 1-15, DOI:10.3103/S1063455X12010018. Gordeev V.V. (1983). River runoff into the ocean and features of its geochemistry. Moscow: Nauka. Grebennikova T.V., Syroeshkin A.V., Chichaeva M.A., Esper S.A., Lvov D.K. (2017). Natural foci of influenza A in the western Arctic. Voprosy Virusologii, 62(1), 11-17, DOI:10.18821/0507-4088-2017-62-1-11-17. Grishchenko S.V., Grishchenko I.S., Kostenko V.S., Basenko I.N. et al. (2018). Hygienic assessment of atmospheric air pollution of populated areas of Donbass by heavy metals. Bulletin of Hygiene and Epidemiology, 22(1), 11-15. Izhar S., Goel A., Chakraborty A., Gupta T. Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals. (2016). Chemosphere, 146, 582-590, DOI:10.1016/j.chemosphere.2015.12.039. Jordi A., Basterretxea G., Tovar-Sánchez A., Alastuey A., Querol X. (2012). Copper aerosols inhibit phytoplankton growth in the Mediterranean Sea. Proceedings of the National Academy of Sciences USA, 109(52), 21246-21249, DOI:10.1073/pnas.1207567110. Kirkpatrick B., Fleming L.E., Bean J.A., Nierenberg K., et al. (2011). Aerosolized Red Tide Toxins (Brevetoxins) and Asthma: Continued health effects after 1 hour beach exposure. Harmful Algae, 10(2), 138-143, DOI:10.1016/j.hal.2010.08.005. Kolesnikov M.V., Matveeva I.S., Lapshin V.B., Pletenev S.S., et al. (2005). Heavy metals in marine aerosols of the Russian part of the Black sea. Oceanology, 45(1), 102-111. Lang-Yona N., Lehahn Y., Herut B., Burshtein N., Rudich Y. (2014) Marine aerosol as a possible source for endotoxins in coastal areas. Science of the Total Environment, 499, 311-8, DOI:10.1016/j.scitotenv.2014.08.054. Li J., Han Z., Yao X., Xie Z., Tan S. (2019). The distributions and direct radiative effects of marine aerosols over East Asia in springtime. Sci Total Environ. 651(2), 1913–1925, DOI:10.1016/j.scitotenv.2018.09.368. Li S., Du L., Tsona N.T., Wang W. (2018). The interaction of trace heavy metal with lipid monolayer in the sea surface microlayer. Chemosphere. 196, 323-330. DOI:10.1016/j.chemosphere.2017.12.157. Liu Y., Li S., Sun C., Qi M., et al. (2018) Pollution Level and Health Risk Assessment of PM2.5-Bound Metals in Baoding City Before and After the Heating Period. International Journal of Environmental Research and Public Health, 15(10), 2286. DOI:10.3390/ijerph15102286. Mahowald N.M., Hamilton D.S., Mackey K.R., Moore J.K., et al. (2018). Aerosol trace metal leaching and impacts on marine microorganisms. Nature Communications, 9(1), 2614, DOI:10.1038/s41467-018-04970-7. Marín-Beltrán I., Logue J.B., Andersson A.F., Peters F. (2019). Atmospheric Deposition Impact on Bacterial Community Composition in the NW Mediterranean. Frontiers in Microbiology, 10(858), 1-14, DOI:10.3389/fmicb.2019.00858. O’Dowd C.D., Jimenez J.L., Bahreini R., Flagan R.C., et al. (2002). Marine aerosol formation from biogenic iodine emissions. Nature, 417 (6889), 597-598. DOI:10.1038/nature00775. O’Dowd C.D., de Leeuw G. (2007). Marine aerosol production: a review of the current knowledge. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 365(1856), 1753-1774, DOI:10.1098/rsta.2007.2043. Patocka J., Nepovimova E., Wu Q., Kuca K. (2018). Palytoxin congeners. Archives of Toxicology, 92(1), 143-156, DOI:10.1007/s00204-017-2105-8. Paytan A., Mackey K.R.M., Chen Y., Lima I.D., et al.(2009). Toxicity of atmospheric aerosols on marine phytoplankton. Proceedings of the National Academy of Sciences USA, 106(12), 4601-4605, DOI:10.1073/pnas.0811486106. Qureshi A, MacLeod M, Hungerbühler K. (2009). Modeling aerosol suspension from soils and oceans as sources of micropollutants to air. Chemosphere, 77(4), 495-500, DOI:10.1016/j.chemosphere.2009.07.051. Rädlein N., Heumann K.G. (2006). Trace Analysis of Heavy Metals in Aerosols Over the Atlantic Ocean from Antarctica to Europe. International Journal of Environmental Analytical Chemistry, 48, 127-150. Rastelli E., Corinaldesi C., Dell’Anno A., Lo Martire M., et al. (2017). Transfer of labile organic matter and microbes from the ocean surface to the marine aerosol: an experimental approach. Scientific Reports, 7, 11475, DOI:10.1038/s41598-017-10563-z. Sajeev P., Randall V.M., Van Donkelaar A., et al. (2014). Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment Environmental Science & Technology, 48(22), 13060-13068, DOI:10.1021/es502965b. Salomons W., Bayne B. L., Duursma E.K., Förstner U. (1988). Pollution of the North Sea. Springer, Berlin, Heidelberg, 300-347. Sánchez-Rodas D., Alsioufi, L., Sánchez de la Campa A.M., González-Castanedo Y. (2017). Antimony speciation as geochemical tracer for anthropogenic emissions of atmospheric particulate matter, Journal of Hazardous Materials, 324(B), 213-220, DOI:10.1016/j.jhazmat.2016.10.051. Song S.K., Shon Z.H., Choi Y.N., Son Y.B., et al. (2019). Global trend analysis in primary and secondary production of marine aerosol and aerosol optical depth during 2000–2015. Chemosphere, 224, 417-427, DOI:10.1016/j.chemosphere.2019.02.152. Sullivan R.C., Levy R.C., da Silva A.M., Developing and diagnosing climate change indicators of regional aerosol optical properties. Scientific Reports, 7(1), 1-13, DOI:10.1038/s41598-017-18402-x. Syroeshkin A.V., Chichaeva M.A. (2010). Concentaration level of heavy metals within marine aerosols of Western Arctic seas, Southern Atlantic and Arctic ocean. Trace elements in medicine, 11(2), 15. Takata K., Saito K., Yasunari T. (2009). Changes in the Asian monsoon climate during 1700–1850 induced by preindustrial cultivation. Proceedings of the National Academy of Sciences USA, 106(24), 9586-9589, DOI:10.1073/pnas.0807346106. Tuohy A., Bertler N., Neff P., Edwards R., Emanuelsson D., et al. (2015). Transport and deposition of heavy metals in the Ross Sea Region, Antarctica. Journal of Geophysical Research: Atmospheres, 120, 10, 996-11,011, DOI:10.1002/2015JD023293. Van Dolah F.M.(2000). Marine algal toxins: origins, health effects, and their increased occurrence. Environmental Health Perspectives, 108(1), 133-41, DOI:10.1289/ehp.00108s1133. Von Glasow R., Jickells T.D., Baklanov A., Carmichael G.R., et al. (2013). Megacities and Large Urban Agglomerations in the Coastal Zone: Interactions Between Atmosphere, Land, and Marine Ecosystems. AMBIO A Journal of the Human Environment, 42(1), 13-28, DOI:10.1007/s13280-012-0343-9. Vinogradova A.A., Ivanova Yu.A. (2017). The transfer of air masses and pollution to the Arctic islands of Russia (1986–2016): long-term, interannual and seasonal variations. Geophysical processes and biosphere. 16(4), 5-20, DOI:10.21455/GPB2017.4-1. Vinogradova A.A., Kotova E.I. (2019). Heavy metal pollution of the northern seas of Russia: flow from the atmosphere and river runoff. Geophysical processes and biosphere. 18 (1), 22-32, DOI:10.21455/GPB2019.1-3. Voityuk Yu. Yu., Kuraeva I.V., Loktionova E.P. (2018). Sources of heavy metal pollution in the territories of industrial agglomerations of ferrous metallurgy. Materials of the VI International Scientific Conference. Modern problems of landscape science and geoecology (on the 100th anniversary of the birth of Professor V.A. Dementiev). Ed. A.N. Witchenko. Walsh J.J., Lenes J.M., Weisberg R.H., Zheng L., et al. (2017). More surprises in the global greenhouse: Human health impacts from recent toxicmarine aerosol formations, due to centennial alterations of world-wide coastal food webs. Marine Pollution Bulletin, 116(1-2), 9-40, DOI:10.1016/j.marpolbul.2016.12.053. Wang X., He S., Chen, Zhang Y, et al. (2018). Spatiotemporal Characteristics and Health Risk Assessment of Heavy Metals in PM2.5 in Zhejiang Province. International Journal of environmental research and public health, 15(4), 583, DOI:10.3390/ijerph15040583. Witt M., Baker A. R., Jickells T. D. (2006). Atmospheric trace metals over the Atlantic and South Indian Oceans: Investigation of metal concentrations and lead isotope ratios in coastal and remote marine aerosols. Atmospheric Environment, 40, 5435-5451, DOI:10.1016/j.atmosenv.2006.04.041. Zatsepa S.N., Lapshin V.B., Oradovsky S.G., Simonov A.I. A device for sampling water from a surface microlayer. Copyright certificate No. 1375974 of December 3, 1985. |
op_rights |
Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу |
op_rightsnorm |
CC-BY |
op_doi |
https://doi.org/10.24057/2071-9388-2020-11 https://doi.org/10.1126/sciadv.aau7671 https://doi.org/10.1007/s11356-015-4700-7 https://doi.org/10.1146/annurevmarine-121916-063148 https://doi.org/10.1073/pnas.96.7.3372 https://doi.org/10.1175/JAS-D- |
container_title |
RELIEVE - Revista Electrónica de Investigación y Evaluación Educativa |
container_volume |
21 |
container_issue |
2 |
_version_ |
1766287264713801728 |
spelling |
ftjges:oai:oai.gesj.elpub.ru:article/1166 2023-05-15T14:14:54+02:00 Heavy Metals In Marine Aerosols Of The Azov Sea Marina Chichaeva A. Mikhail Lychagin Yu. Anton Syroeshkin V. Olga Chernitsova V. 2020-06-24 application/pdf https://ges.rgo.ru/jour/article/view/1166 https://doi.org/10.24057/2071-9388-2020-11 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/1166/472 Akinori I., Myriokefalitakis S., Kanakidou M., Mahowald N. M., et al. (2019). Pyrogenic iron: The missing link to high iron solubility in aerosols. Science Advances, 5(5), 7671, DOI:10.1126/sciadv.aau7671 . Aryasree S, Nair PR, Girach IA, Jacob S. (2015). Winter time chemical characteristics of aerosols over the Bay of Bengal: continental influence. Environmental Science and Pollution Research, 22(19), 14901-14918, DOI:10.1007/s11356-015-4700-7. Brooks S.D., Thornton D.C. (2018). Marine Aerosols and Clouds. Annual Review of Marine Science, 3(10), 289-313, DOI:10.1146/annurevmarine-121916-063148. Buseck P. R., Posfai M. (1999) Airborne minerals and related aerosol particles: Effects on climate and the environment. Proceedings of the National Academy of Sciences, 96(7), 3372–3379, DOI:10.1073/pnas.96.7.3372. Chandrakar K.K., Cantrell W., Chang K., Ciochetto D., et al. (2016). Aerosol indirect effect from turbulence-induced broadening of clouddroplet size distributions. Proceedings of the National Academy of Sciences USA, 113(50), 14243-14248, DOI:10.1175/JAS-D-18-0006.1. Coquery M., Villeneuve J.P. (2001). Final report on the split sampling exercises and quality assurance activities. EU Project № ENV RM S9602, Amsterdam, ICWC, 51. Csavina J., Field J., Taylor M.P., Gao S., et al. (2012). A Review on the Importance of Metals and Metalloids in Atmospheric Dust and Aerosol from Mining Operations. Science of the Total Environment, 433, 58-73, DOI:10.1016/j.scitotenv.2012.06.013. Fleming L.E., Bean J.A., Kirkpatrick B., Cheng Y.S., et al. (2009). Exposure and effect assessment of aerosolized red tide toxins (brevetoxins) and asthma. Environmental Health Perspectives, 117(7), 1095-100. DOI:10.1289/ehp.0900673. Furness R.W. (2017). Heavy Metals in the Marine Environment. CRC press. Garrett W.D. (1965). Collection of slick-forming materials from the sea surface. // Limnol. Oceanog, 10, 602-605. . Georgoulias A.K., Alexandri G., Kourtidis K.A., Lelieveld J., et al. (2016). Spatiotemporal variability and contribution of different aerosol types to the Aerosol Optical Depth over the Eastern Mediterranean. Atmospheric Chemistry And Physics, 16(21), 13853-13884, DOI:10.5194/acp-1613853-2016. Golubeva N.I., Burtseva L.V., Gromov S.A. (2011). Heavy Metals in Atmospheric Air in the Kara Sea Water Area in September–October. Oceanology, 58, 870-878. DOI: doi.org/10.1134/S000143701806005X. Goncharuk V.V., Lapshin V.B., Chichaeva M.A., Samsoni-Todorov A.O., et al. (2012). Heavy metals, aluminum and arsenic in aerosols of the oceans. Chemistry and Water Technology, 34(1), 1-15, DOI:10.3103/S1063455X12010018. Gordeev V.V. (1983). River runoff into the ocean and features of its geochemistry. Moscow: Nauka. Grebennikova T.V., Syroeshkin A.V., Chichaeva M.A., Esper S.A., Lvov D.K. (2017). Natural foci of influenza A in the western Arctic. Voprosy Virusologii, 62(1), 11-17, DOI:10.18821/0507-4088-2017-62-1-11-17. Grishchenko S.V., Grishchenko I.S., Kostenko V.S., Basenko I.N. et al. (2018). Hygienic assessment of atmospheric air pollution of populated areas of Donbass by heavy metals. Bulletin of Hygiene and Epidemiology, 22(1), 11-15. Izhar S., Goel A., Chakraborty A., Gupta T. Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals. (2016). Chemosphere, 146, 582-590, DOI:10.1016/j.chemosphere.2015.12.039. Jordi A., Basterretxea G., Tovar-Sánchez A., Alastuey A., Querol X. (2012). Copper aerosols inhibit phytoplankton growth in the Mediterranean Sea. Proceedings of the National Academy of Sciences USA, 109(52), 21246-21249, DOI:10.1073/pnas.1207567110. Kirkpatrick B., Fleming L.E., Bean J.A., Nierenberg K., et al. (2011). Aerosolized Red Tide Toxins (Brevetoxins) and Asthma: Continued health effects after 1 hour beach exposure. Harmful Algae, 10(2), 138-143, DOI:10.1016/j.hal.2010.08.005. Kolesnikov M.V., Matveeva I.S., Lapshin V.B., Pletenev S.S., et al. (2005). Heavy metals in marine aerosols of the Russian part of the Black sea. Oceanology, 45(1), 102-111. Lang-Yona N., Lehahn Y., Herut B., Burshtein N., Rudich Y. (2014) Marine aerosol as a possible source for endotoxins in coastal areas. Science of the Total Environment, 499, 311-8, DOI:10.1016/j.scitotenv.2014.08.054. Li J., Han Z., Yao X., Xie Z., Tan S. (2019). The distributions and direct radiative effects of marine aerosols over East Asia in springtime. Sci Total Environ. 651(2), 1913–1925, DOI:10.1016/j.scitotenv.2018.09.368. Li S., Du L., Tsona N.T., Wang W. (2018). The interaction of trace heavy metal with lipid monolayer in the sea surface microlayer. Chemosphere. 196, 323-330. DOI:10.1016/j.chemosphere.2017.12.157. Liu Y., Li S., Sun C., Qi M., et al. (2018) Pollution Level and Health Risk Assessment of PM2.5-Bound Metals in Baoding City Before and After the Heating Period. International Journal of Environmental Research and Public Health, 15(10), 2286. DOI:10.3390/ijerph15102286. Mahowald N.M., Hamilton D.S., Mackey K.R., Moore J.K., et al. (2018). Aerosol trace metal leaching and impacts on marine microorganisms. Nature Communications, 9(1), 2614, DOI:10.1038/s41467-018-04970-7. Marín-Beltrán I., Logue J.B., Andersson A.F., Peters F. (2019). Atmospheric Deposition Impact on Bacterial Community Composition in the NW Mediterranean. Frontiers in Microbiology, 10(858), 1-14, DOI:10.3389/fmicb.2019.00858. O’Dowd C.D., Jimenez J.L., Bahreini R., Flagan R.C., et al. (2002). Marine aerosol formation from biogenic iodine emissions. Nature, 417 (6889), 597-598. DOI:10.1038/nature00775. O’Dowd C.D., de Leeuw G. (2007). Marine aerosol production: a review of the current knowledge. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 365(1856), 1753-1774, DOI:10.1098/rsta.2007.2043. Patocka J., Nepovimova E., Wu Q., Kuca K. (2018). Palytoxin congeners. Archives of Toxicology, 92(1), 143-156, DOI:10.1007/s00204-017-2105-8. Paytan A., Mackey K.R.M., Chen Y., Lima I.D., et al.(2009). Toxicity of atmospheric aerosols on marine phytoplankton. Proceedings of the National Academy of Sciences USA, 106(12), 4601-4605, DOI:10.1073/pnas.0811486106. Qureshi A, MacLeod M, Hungerbühler K. (2009). Modeling aerosol suspension from soils and oceans as sources of micropollutants to air. Chemosphere, 77(4), 495-500, DOI:10.1016/j.chemosphere.2009.07.051. Rädlein N., Heumann K.G. (2006). Trace Analysis of Heavy Metals in Aerosols Over the Atlantic Ocean from Antarctica to Europe. International Journal of Environmental Analytical Chemistry, 48, 127-150. Rastelli E., Corinaldesi C., Dell’Anno A., Lo Martire M., et al. (2017). Transfer of labile organic matter and microbes from the ocean surface to the marine aerosol: an experimental approach. Scientific Reports, 7, 11475, DOI:10.1038/s41598-017-10563-z. Sajeev P., Randall V.M., Van Donkelaar A., et al. (2014). Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment Environmental Science & Technology, 48(22), 13060-13068, DOI:10.1021/es502965b. Salomons W., Bayne B. L., Duursma E.K., Förstner U. (1988). Pollution of the North Sea. Springer, Berlin, Heidelberg, 300-347. Sánchez-Rodas D., Alsioufi, L., Sánchez de la Campa A.M., González-Castanedo Y. (2017). Antimony speciation as geochemical tracer for anthropogenic emissions of atmospheric particulate matter, Journal of Hazardous Materials, 324(B), 213-220, DOI:10.1016/j.jhazmat.2016.10.051. Song S.K., Shon Z.H., Choi Y.N., Son Y.B., et al. (2019). Global trend analysis in primary and secondary production of marine aerosol and aerosol optical depth during 2000–2015. Chemosphere, 224, 417-427, DOI:10.1016/j.chemosphere.2019.02.152. Sullivan R.C., Levy R.C., da Silva A.M., Developing and diagnosing climate change indicators of regional aerosol optical properties. Scientific Reports, 7(1), 1-13, DOI:10.1038/s41598-017-18402-x. Syroeshkin A.V., Chichaeva M.A. (2010). Concentaration level of heavy metals within marine aerosols of Western Arctic seas, Southern Atlantic and Arctic ocean. Trace elements in medicine, 11(2), 15. Takata K., Saito K., Yasunari T. (2009). Changes in the Asian monsoon climate during 1700–1850 induced by preindustrial cultivation. Proceedings of the National Academy of Sciences USA, 106(24), 9586-9589, DOI:10.1073/pnas.0807346106. Tuohy A., Bertler N., Neff P., Edwards R., Emanuelsson D., et al. (2015). Transport and deposition of heavy metals in the Ross Sea Region, Antarctica. Journal of Geophysical Research: Atmospheres, 120, 10, 996-11,011, DOI:10.1002/2015JD023293. Van Dolah F.M.(2000). Marine algal toxins: origins, health effects, and their increased occurrence. Environmental Health Perspectives, 108(1), 133-41, DOI:10.1289/ehp.00108s1133. Von Glasow R., Jickells T.D., Baklanov A., Carmichael G.R., et al. (2013). Megacities and Large Urban Agglomerations in the Coastal Zone: Interactions Between Atmosphere, Land, and Marine Ecosystems. AMBIO A Journal of the Human Environment, 42(1), 13-28, DOI:10.1007/s13280-012-0343-9. Vinogradova A.A., Ivanova Yu.A. (2017). The transfer of air masses and pollution to the Arctic islands of Russia (1986–2016): long-term, interannual and seasonal variations. Geophysical processes and biosphere. 16(4), 5-20, DOI:10.21455/GPB2017.4-1. Vinogradova A.A., Kotova E.I. (2019). Heavy metal pollution of the northern seas of Russia: flow from the atmosphere and river runoff. Geophysical processes and biosphere. 18 (1), 22-32, DOI:10.21455/GPB2019.1-3. Voityuk Yu. Yu., Kuraeva I.V., Loktionova E.P. (2018). Sources of heavy metal pollution in the territories of industrial agglomerations of ferrous metallurgy. Materials of the VI International Scientific Conference. Modern problems of landscape science and geoecology (on the 100th anniversary of the birth of Professor V.A. Dementiev). Ed. A.N. Witchenko. Walsh J.J., Lenes J.M., Weisberg R.H., Zheng L., et al. (2017). More surprises in the global greenhouse: Human health impacts from recent toxicmarine aerosol formations, due to centennial alterations of world-wide coastal food webs. Marine Pollution Bulletin, 116(1-2), 9-40, DOI:10.1016/j.marpolbul.2016.12.053. Wang X., He S., Chen, Zhang Y, et al. (2018). Spatiotemporal Characteristics and Health Risk Assessment of Heavy Metals in PM2.5 in Zhejiang Province. International Journal of environmental research and public health, 15(4), 583, DOI:10.3390/ijerph15040583. Witt M., Baker A. R., Jickells T. D. (2006). Atmospheric trace metals over the Atlantic and South Indian Oceans: Investigation of metal concentrations and lead isotope ratios in coastal and remote marine aerosols. Atmospheric Environment, 40, 5435-5451, DOI:10.1016/j.atmosenv.2006.04.041. Zatsepa S.N., Lapshin V.B., Oradovsky S.G., Simonov A.I. A device for sampling water from a surface microlayer. Copyright certificate No. 1375974 of December 3, 1985. Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 13, No 2 (2020); 127-134 2542-1565 2071-9388 heavy metals;spatial distribution;aerosol;micro particles;sea surface microlayer;pollution;Don River;Taganrog Bay info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2020 ftjges https://doi.org/10.24057/2071-9388-2020-11 https://doi.org/10.1126/sciadv.aau7671 https://doi.org/10.1007/s11356-015-4700-7 https://doi.org/10.1146/annurevmarine-121916-063148 https://doi.org/10.1073/pnas.96.7.3372 https://doi.org/10.1175/JAS-D- 2021-05-21T07:34:36Z The content of heavy metals and Al in the aerosol matter over the Sea of Azov has been studied. According to the special test the vast majority of samples were attributed to the type of marine aerosol. The ranges of contents were determined as following: Fe (200 – 2000 ng/m3), Al (20 – 200 ng/m3), Zn (10 – 280 ng/m3), Cu (2 – 23 ng/m3), Ni (1 – 16 ng/m3), Pb (3 -30 ng/m3), Cd (0.4 –2.8 ng/m3); Mn (3 – 23 ng/m3), Cr (1 – 15 ng/m3). The spatial distribution of HMs in the marine aerosol of the Sea of Azov depends on the influence of the river-sea geochemical barrier zone in the Taganrog Bay and the anthropogenic impact of the coastal industrial cities. HM concentrations decrease from the northern coast of the bay and the mouth of the Don River towards the open sea. The maximum HM content in marine aerosol observed in the mouth area of the Don River. It may be associated with the HM accumulation at the river-sea geochemical barrier, and also with the anthropogenic impact of the cities of Rostov-on-Don, Azov and Taganrog. Anthropogenic impact of the city of Mariupol cause the maximum values of Fe, Cr, and Cd in marine aerosol matter of the western part of the Taganrog Bay. Article in Journal/Newspaper Antarctica Journal Arctic Geography, Environment, Sustainability (E-Journal) RELIEVE - Revista Electrónica de Investigación y Evaluación Educativa 21 2 |