Black carbon in spring aerosols of Moscow urban background

Air quality in megacities is recognized as the most important environmental problem. Aerosol pollution by combustion emissions is remaining to be uncertain. Measurements of particulate black carbon (BC) were conducted at the urban background site of Meteorological Observatory (MO) MSU during the spr...

Full description

Bibliographic Details
Published in:GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
Main Authors: Olga Popovicheva B., Elena Volpert, Nikolay Sitnikov M., Marina Chichaeva A., Sara Padoan
Other Authors: The authors thank the financial support from RSF project №18-17-00149 for BC measurement performance at MO MSU and air mass transportation modeling. Financial support from RSF project № 19-77-30004 for aethalometric methodic development and data analyses is acknowledged.
Format: Article in Journal/Newspaper
Language:English
Published: Russian Geographical Society 2020
Subjects:
Online Access:https://ges.rgo.ru/jour/article/view/1047
https://doi.org/10.24057/2071-9388-2019-90
id ftjges:oai:oai.gesj.elpub.ru:article/1047
record_format openpolar
institution Open Polar
collection Geography, Environment, Sustainability (E-Journal)
op_collection_id ftjges
language English
topic air quality;black carbon;pollution;megacity
spellingShingle air quality;black carbon;pollution;megacity
Olga Popovicheva B.
Elena Volpert
Nikolay Sitnikov M.
Marina Chichaeva A.
Sara Padoan
Black carbon in spring aerosols of Moscow urban background
topic_facet air quality;black carbon;pollution;megacity
description Air quality in megacities is recognized as the most important environmental problem. Aerosol pollution by combustion emissions is remaining to be uncertain. Measurements of particulate black carbon (BC) were conducted at the urban background site of Meteorological Observatory (MO) MSU during the spring period of 2017 and 2018. BC mass concentrations ranged from 0.1 to 10 μg m–3, on average 1.5±1.3 and 1.1±0.9 µg/m3 , in 2017 and 2018, respectively. Mean BC concentrations displayed significant diurnal variations with poorly prominent morning peak and minimum at day time. BC mass concentrations are higher at night time due the shallow boundary layer and intensive diesel traffic which results in trapping of pollutants. Wind speed and direction are found to be important meteorological factors affected BC concentrations. BC pollution rose identifies the North as the direction of the preferable pollution. A negative correlation between BC concentrations and wind speed confirms the pollution accumulation preferably in stable weather days. Relation of BC pollution to a number of agriculture fires is distinguishable by air mass transportation from South and South-Est of Russia and Western Europe. Mean season ВС concentrations at rural and remote sites in different world locations are discussed.
author2 The authors thank the financial support from RSF project №18-17-00149 for BC measurement performance at MO MSU and air mass transportation modeling. Financial support from RSF project № 19-77-30004 for aethalometric methodic development and data analyses is acknowledged.
format Article in Journal/Newspaper
author Olga Popovicheva B.
Elena Volpert
Nikolay Sitnikov M.
Marina Chichaeva A.
Sara Padoan
author_facet Olga Popovicheva B.
Elena Volpert
Nikolay Sitnikov M.
Marina Chichaeva A.
Sara Padoan
author_sort Olga Popovicheva B.
title Black carbon in spring aerosols of Moscow urban background
title_short Black carbon in spring aerosols of Moscow urban background
title_full Black carbon in spring aerosols of Moscow urban background
title_fullStr Black carbon in spring aerosols of Moscow urban background
title_full_unstemmed Black carbon in spring aerosols of Moscow urban background
title_sort black carbon in spring aerosols of moscow urban background
publisher Russian Geographical Society
publishDate 2020
url https://ges.rgo.ru/jour/article/view/1047
https://doi.org/10.24057/2071-9388-2019-90
genre Arctic
genre_facet Arctic
op_source GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 13, No 1 (2020); 233-243
2542-1565
2071-9388
op_relation https://ges.rgo.ru/jour/article/view/1047/454
Ahmed T., Dutkiewicz V.A., Khan A.J. and Husain L. (2014). Long term trends in black carbon concentrations in the Northeastern United States. Atmospheric Research, 137, 49-57. doi:10.1016/j.atmosres.2013.10.003
Bhugwant C. and Brémaud P. (2001). Simultaneous measurements of black carbon, PM10, ozone and NOx variability at a locally polluted island in the Southern tropics. Journal of Atmospheric Chemistry, 39, 261-280. doi:10.1023/A:1010692201459
Bityukova V. and Saulskaya T. (2017). Changes of the anthropogenic impact of Moscow industrial zones during the recent decades. Vestnik Moskovskogo Unviersiteta, Seriya Geografiya, 3, 24-33 (in Russian with English summary).
Bond T.C., Doherty S.J., Fahey D.W., Forster P.M., et al.(2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118, 5380-5552. doi:10.1002/jgrd.50171
Chen X., Zhang Z., Engling G., Zhang R., et al. (2014). Characterization of fine particulate black carbon in Guangzhou, a megacity of South China. Atmospheric Pollution Research, 5, 361-370. doi:10.5094/APR.2014.042
Cheng Z., Luo L., Wang S., Wang Y., et al. (2016). Status and characteristics of ambient PM2.5 pollution in global megacities. Environment International, 89-90, 212-221. doi:10.1016/j.envint.2016.02.003
Diapouli E., Kalogridis A.-C., Markantonaki C., Vratolis S., et al.(2017). Annual variability of black carbon concentrations originating from biomass and fossil fuel combustion for the suburban aerosol in Athens, Greece. Atmosphere, 8, 34. doi:10.3390/atmos8120234
Dismuke C. and Egede L. (2015). The impact of cognitive, social and physical limitations on income in community dwelling adults with chronic medical and mental disorders. Global Journal of Health Science, 7(5), 183-195. doi:10.5539/gjhs.v7n5p183
Garland R., Yang H., Schmid O., Rose D., et al. (2008). Aerosol optical properties in a rural environment near the mega-city Guangzhou, China: implications for regional air pollution, radiative forcing and remote sensing. Atmospheric Chemistry and Physics, 8, 5161-5186. doi:10.5194/acp-8-5161-2008
Golitsyn G.S., Grechko E.I., Wang G., Wang P., et al. (2015). Studying the pollution of Moscow and Beijing atmospheres with carbon monoxide and aerosol. Izvestiya Atmospheric and Oceanic Physics, 51, 1-11. doi:10.1134/S0001433815010041
Gubanova D., Belikov I., Elansky N., Skorokhod A. and Chubarova N. (2018). Variations in PM2.5 surface concentration in Moscow according to observations at MSU Meteorological Observatory. Atmospheric and Oceanic Optics, 31, 290-299. doi:10.1134/S1024856018030065
Healy R., Sofowote U., Su Y., Debosz J., et al. (2017). Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario. Atmospheric Environment, 161, 34-47. doi:10.1016/j.atmosenv.2017.04.034
Herich H., Hueglin C. and Buchmann B. (2011). A 2.5 year’s source apportionment study of black carbon from wood burning and fossil fuel combustion at urban and rural sites in Switzerland. Atmospheric Measurement Techniques, 4, pp. 1409-1420. doi:10.5194/amt-4-1409-2011
Jacobson M.Z. (2010). Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, arctic ice, and air pollution health. Journal of Geophysical Research: Atmospheres, 115. doi:10.1029/2009JD013795
Janssen N.A.H., Hoek G., Simic-Lawson M., Fischer P., et al. (2011). Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5. Environmental Health Perspectives, 119, 1691-1699. doi:10.1289/ehp.1003369
Järvi L., Junninen H., Karppinen A., Hillamo R., et al. (2008). Temporal variations in black carbon concentrations with different time scales in Helsinki during 1996–2005. Atmospheric Chemistry and Physics, 8, 1017-1027. doi:10.5194/acp-8-1017-2008
Kendall M., Hamilton R., Watt J. and Williams I. (2001). Characterisation of selected speciated organic compounds associated with particulate matter in London. Atmospheric Environment, 35, 2483-2495. doi:10.1016/S1352-2310(00)00431-3
Konovalov I., Beekmann M., Meleux F., Dutot A. and Foret G. (2009). Combining deterministic and statistical approaches for PM10 forecasting in Europe. Atmospheric Environment, 43, 6425-6434. doi:10.1016/j.atmosenv.2009.06.039
Kopeikin V., Emilenko A., Isakov A., Loskutova O. and Ponomareva T.Y. (2018). Variability of soot and fine aerosol in the Moscow region in 2014–2016. Atmospheric and Oceanic Optics, 31, 243-249. doi:10.1134/S1024856018030089
Kozlov V., Panchenko M. and Yausheva E. (2011). Diurnal variations of the submicron aerosol and black carbon in the near-ground layer. Atmospheric and Oceanic Optics, 24, 30-38. doi:10.1134/S102485601101009X
Kul’bachevskii A.O. (Ed.) (2017). Report on the state of the environment in Moscow in 2016. NIiPI IGSP, Moscow. (in Russian).
Kuznetsova I., Konovalov I., Glazkova A., Nakhaev M., et al. (2011). Observed and calculated variability of the particulate matter concentration in Moscow and in Zelenograd. Russian Meteorology and Hydrology, 36, 175-184. doi:10.3103/S1068373911030046
Lokoshchenko M. (2015). Wind direction in Moscow. Russian Meteorology and Hydrology, 40, 639-646. doi:10.3103/S1068373915100015
Mousavi A., Sowlat M.H., Hasheminassab S., Polidori A. and Sioutas C. (2018). Spatio-temporal trends and source apportionment of fossil fuel and biomass burning black carbon (BC) in the Los Angeles basin. Science of the Total Environment, 640, 1231-1240. doi:10.1016/j. scitotenv.2018.06.022
Niu S. and Zhang Q. (2010). Scattering and absorption coefficients of aerosols in a semi-arid area in China: Diurnal cycle, seasonal variability and dust events. Asia-Pacific Journal of Atmospheric Sciences, 46, 65-71. doi:10.1007/s13143-010-0007-2
Ohara T., Akimoto H., Kurokawa J.-I., Horii N., Yamaji K., Yan X. and Hayasaka T. (2007). An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmospheric Chemistry and Physics, 7, 4419-4444. doi:10.5194/acp-7-4419-2007
Pope III C.A. and Dockery D.W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the Air & Waste Management Association, 56, 709-742. doi:10.1080/10473289.2006.10464485
Popovicheva O., Kistler M., Kireeva E., Persiantseva N., et al. (2014). Physicochemical characterization of smoke aerosol during large-scale wildfires: extreme event of August 2010 in Moscow. Atmospheric Environment, 96, 405-414. doi:10.1016/j.atmosenv.2014.03.026
Popovicheva O.B., Engling G., Ku I.-T., Timofeev M.A. and Shonija N.K. (2019). Aerosol emissions from long-lasting smoldering of boreal peatlands: chemical composition, markers, and microstructure. Aerosol and Air Quality Research, 19, 484-503. doi:10.4209/aaqr.2018.08.0302
Popovicheva O.B., Evangeliou N., Eleftheriadis K., Kalogridis A.C., et al. (2017a). Black carbon sources constrained by observations in the Russian high Arctic. Environmental Science & Technology, 51, 3871-3879. doi:10.1021/acs.est.6b05832
Popovicheva O.B., Shonija N.K., Persiantseva N., Timofeev M., et al. (2017b). Aerosol pollutants during agricultural biomass burning: A case study in Ba Vi region in Hanoi, Vietnam. Aerosol and Air Quality Research, 17, 2762-2779. doi:10.4209/aaqr.2017.03.0111
Ramachandran S. and Rajesh T. (2007). Black carbon aerosol mass concentrations over Ahmedabad, an urban location in Western India: comparison with urban sites in Asia, Europe, Canada, and the United States. Journal of Geophysical Research: Atmospheres, 112. doi:10.1029/2006JD007488
Reddy M.S. and Venkataraman C. (2002). Inventory of aerosol and sulphur dioxide emissions from India: I—fossil fuel combustion. Atmospheric Environment, 36, 677-697. doi:10.1016/S1352-2310(01)00463-0
Salcedo D., Onasch T.B., Dzepina K., Canagaratna M.R., et al. (2006). Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry: results from the CENICA Supersite. Atmospheric Chemistry and Physics, 6(4), 925- 946. doi:10.5194/acp-6-925-2006
Salma I., Chi X. and Maenhaut W. (2004). Elemental and organic carbon in urban canyon and background environments in Budapest, Hungary. Atmospheric Environment, 38, 27-36. doi:10.1016/j.atmosenv.2003.09.047
Sharma S., Brook J., Cachier H., Chow J., et al. (2002). Light absorption and thermal measurements of black carbon in different regions of Canada. Journal of Geophysical Research: Atmospheres, 107, AAC 11-1-AAC 11-11. doi:10.1029/2002JD002496
Singh S., Tiwari S., Gond D., Dumka U., et al. (2015). Intra-seasonal variability of black carbon aerosols over a coal field area at Dhanbad, India. Atmospheric Research, 161, 25-35. doi:10.1016/j.atmosres.2015.03.015
Stein A., Draxler R., Rolph G., Stunder B., et al. (2015). Noaa’s Hysplit Atmospheric Transport and Dispersion Modeling System. Bulletin of the American Meteorological Society, 96, 2059-2077. doi:10.1175/BAMS-D-14-00110.1
Steiner S., Czerwinski J., Comte P., Popovicheva O., et al. (2013). Comparison of the toxicity of diesel exhaust produced by bio-and fossil diesel combustion in human lung cells in vitro. Atmospheric Environment, 81, 380-388. doi:10.1016/j.atmosenv.2013.08.059
Weingartner E., Keller C., Stahel W., Burtscher H. and Baltensperger U. (1997). Aerosol emission in a road tunnel. Atmospheric Environment, 31, 451-462. doi:10.1016/S1352-2310(96)00193-8
WHO (2005). WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide - Global Update 2005.
WHO (2012). Health effects of black carbon. WHO.
Wu D., Wu C., Liao B., Chen H., et al. (2013). Black carbon over the South China Sea and in various continental locations in South China. Atmospheric Chemistry and Physics, 13, 12257-12270. doi:10.5194/acp-13-12257-2013
https://ges.rgo.ru/jour/article/view/1047
doi:10.24057/2071-9388-2019-90
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein.
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу
op_rightsnorm CC-BY
op_doi https://doi.org/10.24057/2071-9388-2019-90
https://doi.org/10.1016/j.atmosres.2013.10.003
https://doi.org/10.1023/A:1010692201459
https://doi.org/10.1002/jgrd.50171
https://doi.org/10.5094/APR.2014.042
https://doi.org/10.1016/j.envint.2016.02.00
container_title GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
container_volume 13
container_issue 1
container_start_page 233
op_container_end_page 243
_version_ 1766302552700223488
spelling ftjges:oai:oai.gesj.elpub.ru:article/1047 2023-05-15T14:28:23+02:00 Black carbon in spring aerosols of Moscow urban background Olga Popovicheva B. Elena Volpert Nikolay Sitnikov M. Marina Chichaeva A. Sara Padoan The authors thank the financial support from RSF project №18-17-00149 for BC measurement performance at MO MSU and air mass transportation modeling. Financial support from RSF project № 19-77-30004 for aethalometric methodic development and data analyses is acknowledged. 2020-04-01 application/pdf https://ges.rgo.ru/jour/article/view/1047 https://doi.org/10.24057/2071-9388-2019-90 eng eng Russian Geographical Society https://ges.rgo.ru/jour/article/view/1047/454 Ahmed T., Dutkiewicz V.A., Khan A.J. and Husain L. (2014). Long term trends in black carbon concentrations in the Northeastern United States. Atmospheric Research, 137, 49-57. doi:10.1016/j.atmosres.2013.10.003 Bhugwant C. and Brémaud P. (2001). Simultaneous measurements of black carbon, PM10, ozone and NOx variability at a locally polluted island in the Southern tropics. Journal of Atmospheric Chemistry, 39, 261-280. doi:10.1023/A:1010692201459 Bityukova V. and Saulskaya T. (2017). Changes of the anthropogenic impact of Moscow industrial zones during the recent decades. Vestnik Moskovskogo Unviersiteta, Seriya Geografiya, 3, 24-33 (in Russian with English summary). Bond T.C., Doherty S.J., Fahey D.W., Forster P.M., et al.(2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118, 5380-5552. doi:10.1002/jgrd.50171 Chen X., Zhang Z., Engling G., Zhang R., et al. (2014). Characterization of fine particulate black carbon in Guangzhou, a megacity of South China. Atmospheric Pollution Research, 5, 361-370. doi:10.5094/APR.2014.042 Cheng Z., Luo L., Wang S., Wang Y., et al. (2016). Status and characteristics of ambient PM2.5 pollution in global megacities. Environment International, 89-90, 212-221. doi:10.1016/j.envint.2016.02.003 Diapouli E., Kalogridis A.-C., Markantonaki C., Vratolis S., et al.(2017). Annual variability of black carbon concentrations originating from biomass and fossil fuel combustion for the suburban aerosol in Athens, Greece. Atmosphere, 8, 34. doi:10.3390/atmos8120234 Dismuke C. and Egede L. (2015). The impact of cognitive, social and physical limitations on income in community dwelling adults with chronic medical and mental disorders. Global Journal of Health Science, 7(5), 183-195. doi:10.5539/gjhs.v7n5p183 Garland R., Yang H., Schmid O., Rose D., et al. (2008). Aerosol optical properties in a rural environment near the mega-city Guangzhou, China: implications for regional air pollution, radiative forcing and remote sensing. Atmospheric Chemistry and Physics, 8, 5161-5186. doi:10.5194/acp-8-5161-2008 Golitsyn G.S., Grechko E.I., Wang G., Wang P., et al. (2015). Studying the pollution of Moscow and Beijing atmospheres with carbon monoxide and aerosol. Izvestiya Atmospheric and Oceanic Physics, 51, 1-11. doi:10.1134/S0001433815010041 Gubanova D., Belikov I., Elansky N., Skorokhod A. and Chubarova N. (2018). Variations in PM2.5 surface concentration in Moscow according to observations at MSU Meteorological Observatory. Atmospheric and Oceanic Optics, 31, 290-299. doi:10.1134/S1024856018030065 Healy R., Sofowote U., Su Y., Debosz J., et al. (2017). Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario. Atmospheric Environment, 161, 34-47. doi:10.1016/j.atmosenv.2017.04.034 Herich H., Hueglin C. and Buchmann B. (2011). A 2.5 year’s source apportionment study of black carbon from wood burning and fossil fuel combustion at urban and rural sites in Switzerland. Atmospheric Measurement Techniques, 4, pp. 1409-1420. doi:10.5194/amt-4-1409-2011 Jacobson M.Z. (2010). Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, arctic ice, and air pollution health. Journal of Geophysical Research: Atmospheres, 115. doi:10.1029/2009JD013795 Janssen N.A.H., Hoek G., Simic-Lawson M., Fischer P., et al. (2011). Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5. Environmental Health Perspectives, 119, 1691-1699. doi:10.1289/ehp.1003369 Järvi L., Junninen H., Karppinen A., Hillamo R., et al. (2008). Temporal variations in black carbon concentrations with different time scales in Helsinki during 1996–2005. Atmospheric Chemistry and Physics, 8, 1017-1027. doi:10.5194/acp-8-1017-2008 Kendall M., Hamilton R., Watt J. and Williams I. (2001). Characterisation of selected speciated organic compounds associated with particulate matter in London. Atmospheric Environment, 35, 2483-2495. doi:10.1016/S1352-2310(00)00431-3 Konovalov I., Beekmann M., Meleux F., Dutot A. and Foret G. (2009). Combining deterministic and statistical approaches for PM10 forecasting in Europe. Atmospheric Environment, 43, 6425-6434. doi:10.1016/j.atmosenv.2009.06.039 Kopeikin V., Emilenko A., Isakov A., Loskutova O. and Ponomareva T.Y. (2018). Variability of soot and fine aerosol in the Moscow region in 2014–2016. Atmospheric and Oceanic Optics, 31, 243-249. doi:10.1134/S1024856018030089 Kozlov V., Panchenko M. and Yausheva E. (2011). Diurnal variations of the submicron aerosol and black carbon in the near-ground layer. Atmospheric and Oceanic Optics, 24, 30-38. doi:10.1134/S102485601101009X Kul’bachevskii A.O. (Ed.) (2017). Report on the state of the environment in Moscow in 2016. NIiPI IGSP, Moscow. (in Russian). Kuznetsova I., Konovalov I., Glazkova A., Nakhaev M., et al. (2011). Observed and calculated variability of the particulate matter concentration in Moscow and in Zelenograd. Russian Meteorology and Hydrology, 36, 175-184. doi:10.3103/S1068373911030046 Lokoshchenko M. (2015). Wind direction in Moscow. Russian Meteorology and Hydrology, 40, 639-646. doi:10.3103/S1068373915100015 Mousavi A., Sowlat M.H., Hasheminassab S., Polidori A. and Sioutas C. (2018). Spatio-temporal trends and source apportionment of fossil fuel and biomass burning black carbon (BC) in the Los Angeles basin. Science of the Total Environment, 640, 1231-1240. doi:10.1016/j. scitotenv.2018.06.022 Niu S. and Zhang Q. (2010). Scattering and absorption coefficients of aerosols in a semi-arid area in China: Diurnal cycle, seasonal variability and dust events. Asia-Pacific Journal of Atmospheric Sciences, 46, 65-71. doi:10.1007/s13143-010-0007-2 Ohara T., Akimoto H., Kurokawa J.-I., Horii N., Yamaji K., Yan X. and Hayasaka T. (2007). An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmospheric Chemistry and Physics, 7, 4419-4444. doi:10.5194/acp-7-4419-2007 Pope III C.A. and Dockery D.W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the Air & Waste Management Association, 56, 709-742. doi:10.1080/10473289.2006.10464485 Popovicheva O., Kistler M., Kireeva E., Persiantseva N., et al. (2014). Physicochemical characterization of smoke aerosol during large-scale wildfires: extreme event of August 2010 in Moscow. Atmospheric Environment, 96, 405-414. doi:10.1016/j.atmosenv.2014.03.026 Popovicheva O.B., Engling G., Ku I.-T., Timofeev M.A. and Shonija N.K. (2019). Aerosol emissions from long-lasting smoldering of boreal peatlands: chemical composition, markers, and microstructure. Aerosol and Air Quality Research, 19, 484-503. doi:10.4209/aaqr.2018.08.0302 Popovicheva O.B., Evangeliou N., Eleftheriadis K., Kalogridis A.C., et al. (2017a). Black carbon sources constrained by observations in the Russian high Arctic. Environmental Science & Technology, 51, 3871-3879. doi:10.1021/acs.est.6b05832 Popovicheva O.B., Shonija N.K., Persiantseva N., Timofeev M., et al. (2017b). Aerosol pollutants during agricultural biomass burning: A case study in Ba Vi region in Hanoi, Vietnam. Aerosol and Air Quality Research, 17, 2762-2779. doi:10.4209/aaqr.2017.03.0111 Ramachandran S. and Rajesh T. (2007). Black carbon aerosol mass concentrations over Ahmedabad, an urban location in Western India: comparison with urban sites in Asia, Europe, Canada, and the United States. Journal of Geophysical Research: Atmospheres, 112. doi:10.1029/2006JD007488 Reddy M.S. and Venkataraman C. (2002). Inventory of aerosol and sulphur dioxide emissions from India: I—fossil fuel combustion. Atmospheric Environment, 36, 677-697. doi:10.1016/S1352-2310(01)00463-0 Salcedo D., Onasch T.B., Dzepina K., Canagaratna M.R., et al. (2006). Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry: results from the CENICA Supersite. Atmospheric Chemistry and Physics, 6(4), 925- 946. doi:10.5194/acp-6-925-2006 Salma I., Chi X. and Maenhaut W. (2004). Elemental and organic carbon in urban canyon and background environments in Budapest, Hungary. Atmospheric Environment, 38, 27-36. doi:10.1016/j.atmosenv.2003.09.047 Sharma S., Brook J., Cachier H., Chow J., et al. (2002). Light absorption and thermal measurements of black carbon in different regions of Canada. Journal of Geophysical Research: Atmospheres, 107, AAC 11-1-AAC 11-11. doi:10.1029/2002JD002496 Singh S., Tiwari S., Gond D., Dumka U., et al. (2015). Intra-seasonal variability of black carbon aerosols over a coal field area at Dhanbad, India. Atmospheric Research, 161, 25-35. doi:10.1016/j.atmosres.2015.03.015 Stein A., Draxler R., Rolph G., Stunder B., et al. (2015). Noaa’s Hysplit Atmospheric Transport and Dispersion Modeling System. Bulletin of the American Meteorological Society, 96, 2059-2077. doi:10.1175/BAMS-D-14-00110.1 Steiner S., Czerwinski J., Comte P., Popovicheva O., et al. (2013). Comparison of the toxicity of diesel exhaust produced by bio-and fossil diesel combustion in human lung cells in vitro. Atmospheric Environment, 81, 380-388. doi:10.1016/j.atmosenv.2013.08.059 Weingartner E., Keller C., Stahel W., Burtscher H. and Baltensperger U. (1997). Aerosol emission in a road tunnel. Atmospheric Environment, 31, 451-462. doi:10.1016/S1352-2310(96)00193-8 WHO (2005). WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide - Global Update 2005. WHO (2012). Health effects of black carbon. WHO. Wu D., Wu C., Liao B., Chen H., et al. (2013). Black carbon over the South China Sea and in various continental locations in South China. Atmospheric Chemistry and Physics, 13, 12257-12270. doi:10.5194/acp-13-12257-2013 https://ges.rgo.ru/jour/article/view/1047 doi:10.24057/2071-9388-2019-90 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publisher. The GES Journal has used its best endeavors to ensure that the information is correct and current at the time of publication but takes no responsibility for any error, omission, or defect therein. Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу CC-BY GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 13, No 1 (2020); 233-243 2542-1565 2071-9388 air quality;black carbon;pollution;megacity info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2020 ftjges https://doi.org/10.24057/2071-9388-2019-90 https://doi.org/10.1016/j.atmosres.2013.10.003 https://doi.org/10.1023/A:1010692201459 https://doi.org/10.1002/jgrd.50171 https://doi.org/10.5094/APR.2014.042 https://doi.org/10.1016/j.envint.2016.02.00 2021-05-21T07:34:48Z Air quality in megacities is recognized as the most important environmental problem. Aerosol pollution by combustion emissions is remaining to be uncertain. Measurements of particulate black carbon (BC) were conducted at the urban background site of Meteorological Observatory (MO) MSU during the spring period of 2017 and 2018. BC mass concentrations ranged from 0.1 to 10 μg m–3, on average 1.5±1.3 and 1.1±0.9 µg/m3 , in 2017 and 2018, respectively. Mean BC concentrations displayed significant diurnal variations with poorly prominent morning peak and minimum at day time. BC mass concentrations are higher at night time due the shallow boundary layer and intensive diesel traffic which results in trapping of pollutants. Wind speed and direction are found to be important meteorological factors affected BC concentrations. BC pollution rose identifies the North as the direction of the preferable pollution. A negative correlation between BC concentrations and wind speed confirms the pollution accumulation preferably in stable weather days. Relation of BC pollution to a number of agriculture fires is distinguishable by air mass transportation from South and South-Est of Russia and Western Europe. Mean season ВС concentrations at rural and remote sites in different world locations are discussed. Article in Journal/Newspaper Arctic Geography, Environment, Sustainability (E-Journal) GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 13 1 233 243