The pre‐Vendian (640–610 ma) granite magmatism in the Central Taimyr fold belt: the final stage of the Neoproterozoic evolution of the Siberian paleocontinent active margin
Eastern part of the Central Taimyr belt is composed of Precambrian rocks penetrated by granites of the Snezhnaya complex (845–825 million years) and later overlain by mid‐Neoproterozoic sin‐ postorogenic sedimentary deposits of the Stanovaya‐Kolosova Group. Two competing concepts on the Precambrian...
Published in: | Geodynamics & Tectonophysics |
---|---|
Main Authors: | , , , , , , , , , , , |
Other Authors: | |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch
2019
|
Subjects: | |
Online Access: | https://www.gt-crust.ru/jour/article/view/934 https://doi.org/10.5800/GT-2019-10-4-0445 |
id |
ftjgat:oai:oai.gtcrust.elpub.ru:article/934 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Geodynamics & Tectonophysics (E-Journal) |
op_collection_id |
ftjgat |
language |
English |
topic |
Сибирский палеоконтинент Taimyr Neoproterozoic collisional granite geochronology Siberia Paleocontinent Таймыр неопротерозой коллизионные граниты геохронология |
spellingShingle |
Сибирский палеоконтинент Taimyr Neoproterozoic collisional granite geochronology Siberia Paleocontinent Таймыр неопротерозой коллизионные граниты геохронология A. B. Kuzmichev M. K. Danukalova V. F. Proskurnin A. A. Bagaeva N. I. Beresyuk P. A. Gromov А. Б. Кузьмичев М. К. Данукалова В. Ф. Проскурнин А. А. Багаева Н. И. Березюк П. А. Громов The pre‐Vendian (640–610 ma) granite magmatism in the Central Taimyr fold belt: the final stage of the Neoproterozoic evolution of the Siberian paleocontinent active margin |
topic_facet |
Сибирский палеоконтинент Taimyr Neoproterozoic collisional granite geochronology Siberia Paleocontinent Таймыр неопротерозой коллизионные граниты геохронология |
description |
Eastern part of the Central Taimyr belt is composed of Precambrian rocks penetrated by granites of the Snezhnaya complex (845–825 million years) and later overlain by mid‐Neoproterozoic sin‐ postorogenic sedimentary deposits of the Stanovaya‐Kolosova Group. Two competing concepts on the Precambrian history of the belt are dis‐ cussed. The first suggests that by the middle of the Neoproterozoic amalgamation of various terrains formed the Cen‐ tral Taimyr microcontinent, which afterwards collided with Siberia in Vendian. 2) According to the second point of view, which is shared by the authors of this article, the belt was part of the Siberian craton from at least the Mesopro‐ terozoic, and there is no suture that would separate it from the South Taimyr belt. To our surprise, during the field work in the South‐Eastern part of the Central Taimyr belt near the proposed “Vendian sutura”, assumed by the first concept, we found a granite pluton (Pregradnaya massif) intruding clastic rocks of Stanovaya‐Kolosova Group. Such setting is quite uncommon for the belt and contradicted to publications, describing the mentioned clastic rocks to overlay the granites and contain their debris. Dating of the pluton confirmed the field observations – its SRIMP zircon age has proved to be 609±2 Ma, an unusually young for this region. The pluton is located in a wide deformation zone separating the Precambrian rocks (to the northwest) and the Paleozoic deposits (to the southeast). Two minor bodies of similar porphyritic granite were found in the same zone further to the southwest, and it seemed logical to assume that a chain of Vendian granites marks boundary deformation zone. However, their dating (843±6 и 840±5 Ma) showed that they belong to Snezhnaya complex. In this paper, we discuss two Neoproterozoic magmatic ‘flare‐ups’ in the Central Taimyr Belt, which are dated at 845–825 and 640–610 Ma. Both ‘flare‐ups’ are evidenced by K‐rich per‐ aluminous granite batholiths intruded the upper crust. It is most probable that each flare‐up was ... |
author2 |
We are grateful to A.N. Larionov for the isotopic dating of zircons. Our studies were supported by the Russian Foundation for Basic Research (Grants 16-05- 00176 and 19-05-00926). The study of A.B. Kuzmichev and M.K. Danukalova was part of the GIN RAS Research Programme (No. 0135-2019-0051). |
format |
Article in Journal/Newspaper |
author |
A. B. Kuzmichev M. K. Danukalova V. F. Proskurnin A. A. Bagaeva N. I. Beresyuk P. A. Gromov А. Б. Кузьмичев М. К. Данукалова В. Ф. Проскурнин А. А. Багаева Н. И. Березюк П. А. Громов |
author_facet |
A. B. Kuzmichev M. K. Danukalova V. F. Proskurnin A. A. Bagaeva N. I. Beresyuk P. A. Gromov А. Б. Кузьмичев М. К. Данукалова В. Ф. Проскурнин А. А. Багаева Н. И. Березюк П. А. Громов |
author_sort |
A. B. Kuzmichev |
title |
The pre‐Vendian (640–610 ma) granite magmatism in the Central Taimyr fold belt: the final stage of the Neoproterozoic evolution of the Siberian paleocontinent active margin |
title_short |
The pre‐Vendian (640–610 ma) granite magmatism in the Central Taimyr fold belt: the final stage of the Neoproterozoic evolution of the Siberian paleocontinent active margin |
title_full |
The pre‐Vendian (640–610 ma) granite magmatism in the Central Taimyr fold belt: the final stage of the Neoproterozoic evolution of the Siberian paleocontinent active margin |
title_fullStr |
The pre‐Vendian (640–610 ma) granite magmatism in the Central Taimyr fold belt: the final stage of the Neoproterozoic evolution of the Siberian paleocontinent active margin |
title_full_unstemmed |
The pre‐Vendian (640–610 ma) granite magmatism in the Central Taimyr fold belt: the final stage of the Neoproterozoic evolution of the Siberian paleocontinent active margin |
title_sort |
pre‐vendian (640–610 ma) granite magmatism in the central taimyr fold belt: the final stage of the neoproterozoic evolution of the siberian paleocontinent active margin |
publisher |
Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch |
publishDate |
2019 |
url |
https://www.gt-crust.ru/jour/article/view/934 https://doi.org/10.5800/GT-2019-10-4-0445 |
long_lat |
ENVELOPE(50.267,50.267,-66.467,-66.467) ENVELOPE(107.171,107.171,76.513,76.513) |
geographic |
Kolosova Pregradnaya |
geographic_facet |
Kolosova Pregradnaya |
genre |
Arctic Polarforschung Taimyr Таймыр Siberia |
genre_facet |
Arctic Polarforschung Taimyr Таймыр Siberia |
op_source |
Geodynamics & Tectonophysics; Том 10, № 4 (2019); 841-861 Геодинамика и тектонофизика; Том 10, № 4 (2019); 841-861 2078-502X 10.5800/GT-2019-10-4-0446 |
op_relation |
https://www.gt-crust.ru/jour/article/view/934/466 Barbarin B., 1990. Granitoids: main petrogenetic classifications in relation to origin and tectonic setting. Geological Journal 25 (3–4), 227–238. https://doi.org/10.1002/gj.3350250306. Беззубцев В.В., Залялеев Р.Ш., Гончаров Ю.И., Сакович А.Б. Геологическая карта Горного Таймыра. Масштаб 1:500000. Красноярск, 1983. 6 л. Беззубцев В.В., Залялеев Р.Ш., Сакович А.Б. Геологическая карта Горного Таймыра. Масштаб 1:500000. Объяснительная записка. Красноярск, 1986. 177 с. Chappell B.W., White A.J.R., 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences 48 (4), 489–499. https://doi.org/10.1046/j.1440-0952.2001.00882.x. Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology 42 (11), 2033–2048. https://doi.org/10.1093/petrology/42.11.2033 Frost B.R., Frost C.D., 2008. A geochemical classification for feldspathic igneous rocks. Journal of Petrology 49 (11), 1955–1969. https://doi.org/10.1093/petrology/egn054. Кузьмичев А.Б., Данукалова М.К. Центрально-Таймырский складчатый пояс в докембрии: пассивная окраина Сибирского палеоконтинента в мезопротерозое, активная окраина в неопротерозое // Проблемы тектоники и геодинамики земной коры и мантии: Материалы L Тектонического совещания. Т. 1. М.: ГЕОС, 2018. С. 352–356. Ludwig K.R., 2001. Squid 1.02. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, vol. 2, 19 p. Ludwig K.R., 2003. Isoplot 3.00. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, vol. 4, 77 p. Государственная геологическая карта Российской Федерации. Масштаб 1:1000000 (третье поколение). Лист Т-45–48 (м. Челюскин). Объяснительная записка / Ред. А.А. Макарьев. СПб.: Картфабрика ВСЕГЕИ, 2013. 472 c. Марковский В.А., Кабаньков В.Я., Соболевская Р.Ф., Проскурнин В.Ф., Шнейдер Г.В., Лазарева Л.Н., Гаврилов А.Г. Государственная геологическая карта Российской Федерации. Масштаб 1:200000. Серия Таймырская. Листы: Т-47-XXVIII-XXX, T-48-XIX-XXX. Объяснительная записка. М., 2000. 186 с. Moyen J.F., Laurent O., Chelle-Michou C., Couzinié S., Vanderhaeghe O., Zeh A., Villaros A., Gardien V., 2017. Collision vs. subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth. Lithos 277, 154–177. https://doi.org/10.1016/j.lithos.2016.09.018. Pearce J.A., Harris N.B.W., Tindle A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25 (4), 956–983. https://doi.org/10.1093/petrology/25.4.956. Pease V., Vernikovsky V., 2000. The tectono-magmatic evolution of the Taimyr Peninsula: Further constraints from new ion-microprobe data. Polarforschung 68, 171–178. Погребицкий Ю.Е. Палеотектонический анализ Таймырской складчатой системы. Л.: Недра, 1971. 284 с. Priyatkina N., Collins W.J., Khudoley A., Zastrozhnov D., Ershova V., Chamberlain K., Shatsillo A., Proskurnin V., 2017. The Proterozoic evolution of northern Siberian craton margin: a comparison of U–Pb–Hf signatures from sedimentary units of the Taimyr orogenic belt and the Siberian platform. International Geology Review 59 (13), 1632–1656. https://doi.org/10.1080/00206814.2017.1289341. Проскурнин В.Ф. Гавриш А.В., Межубовский В.В., Трофимов В.Р., Егоров В.Н., Соболев Н.Н., Наумов М.В., Васильев Б.С., Нагайцева Н.Н., Мозолева И.Н., Черненко Н.Я., Межубовская О.А., Тарноградский В.Д., Багаева А.А., Кямяря В.В., Шманяк А.В., Заика Ю.В., Горбацевич Н.Р., Петрушков Б.С., Матюшев А.П., Гусев Е.А., Ромащенко О.Г. Государственная геологическая карта Российской Федерации. Масштаб 1:1000000 (третье поколение). Лист S-48 – оз. Таймыр (восточная часть). Объяснительная записка. СПб.: Картфабрика ВСЕГЕИ, 2009. 253 с. Proskurnin V.F., Vernikovsky V.A., Metelkin D.V., Petrushkov B.S., Vernikovskaya A.E., Gavrish A.V., Bagaeva A.A., Matushkin N.Yu., Vinogradova N.P., Larionov A.N., 2014. Rhyolite-granite association in the Central Taimyr zone: Evidence of accretionary-collisional events in the Neoproterozoic. Russian Geology and Geophysics 55 (1), 18–32. https://doi.org/10.1016/j.rgg.2013.12.002. Соболевская Р.Ф., Кабаньков В.Я. Стратиграфия кембрийских отложений Горного Таймыра. Труды НИИГА – ВНИИОкеангеология. Т. 228. СПб.: ВНИИОкеангеология, 2014. 43 с. Степанов Г.И., Тарутин О.А., Успенская И.Б., Щекотов М.В., Гарсков В.С. Геологическое строение и полезные ископаемые междуречья Ждановой, Фаддея и Преградной. Материалы к Государственной геологической карте масштаба 1:200000 (лист Т-48-XXXIV, XXXV, XXXVI) (Неопубликованный отчет). Л.: НИИГА, 1965. Уфлянд А.К., Натапов Л.М., Лопатин В.М., Чернов Д.В. О тектонической природе Таймыра // Геотектоника. 1991. № 6. C. 76–93. Vernikovskii V.A., Kotov A.B., Ponomarchuk V.A., Sal’nikova E.B., Kovach V.P., Travin A.V., 1997. Late Riphean – Vendian event in the Northern Taimyr evolution: evidence from Sm–Nd, Rb–Sr, and K–Ar dating of the garnet amphibolites of the Stanovaya ophiolite belt. Transactions (Doklady) of the Russian Academy of Sciences / Earth Science Sections 352 (1), 11–14. Верниковский В.А. Геодинамическая эволюция Таймырской складчатой области. Новосибирск: Издательство СО РАН, НИЦ ОИГГМ, 1996. 203 с. Vernikovsky V.A., Vernikovskaya A.E., 2001. Central Taimyr accretionary belt (Arctic Asia): Meso-Neoproterozoic tectonic evolution and Rodinia breakup. Precambrian Research 110 (1–4), 127–141. https://doi.org/10.1016/ S0301-9268(01)00184-X. Vernikovsky V., Vernikovskaya A., Pease V., Gee D., 2004. Neoproterozoic orogeny along the margins of Siberia. In: D.G. Gee, V. Pease (Eds.), The Neoproterozoic timanide orogeny of Eastern Baltica. Geological Society, London, Memoirs, vol. 30, p. 233–248. https://doi.org/10.1144/GSL.MEM.2004.030.01.18. Whalen J.B., Currie K.L., Chappell B.W., 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95 (4), 407–419. https://doi.org/10.1007/BF00402202. Williams I.S., 1998. U–Th–Pb geochronology by ion microprobe. In: M.A. McKibben, W.C. Shanks, W.I. Ridley (Eds.), Applications of microanalytical techniques to understanding mineralizing processes. Reviews in Economic Geology, vol. 7, p. 1–35. https://doi.org/10.5382/Rev.07.01. Забияка А.И., Забияка И.Д., Верниковский В.А., Сердюк С.С., Злобин М.Н. Геологическое строение и тектоническое развитие Северо-Восточного Таймыра. Новосибирск: Наука, 1986. 144 с. Zonenshain L.P., Kuzmin M.I., Natapov L.M., Page B.M. (Eds.), Geology of the USSR: A Plate-Tectonic Synthesis. AGU Geodynamics Series, vol. 21, 242 p. https://doi.org/10.1029/GD021. https://www.gt-crust.ru/jour/article/view/934 doi:10.5800/GT-2019-10-4-0445 |
op_rights |
Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). |
op_rightsnorm |
CC-BY |
op_doi |
https://doi.org/10.5800/GT-2019-10-4-0445 https://doi.org/10.5800/GT-2019-10-4-0446 https://doi.org/10.1002/gj.3350250306 https://doi.org/10.1046/j.1440-0952.2001.00882.x https://doi.org/10.1093/petrology/42.11.2033 https://doi.org/10.1093/petro |
container_title |
Geodynamics & Tectonophysics |
container_volume |
10 |
container_issue |
4 |
container_start_page |
841 |
op_container_end_page |
861 |
_version_ |
1766302583415111680 |
spelling |
ftjgat:oai:oai.gtcrust.elpub.ru:article/934 2023-05-15T14:28:25+02:00 The pre‐Vendian (640–610 ma) granite magmatism in the Central Taimyr fold belt: the final stage of the Neoproterozoic evolution of the Siberian paleocontinent active margin Предвендский (640–610 млн лет) этап гранитного магматизма в Центрально‐Таймырском складчатом поясе: завершающая стадия эволюции активной окраины неопротерозойского Сибирского палеоконтинента A. B. Kuzmichev M. K. Danukalova V. F. Proskurnin A. A. Bagaeva N. I. Beresyuk P. A. Gromov А. Б. Кузьмичев М. К. Данукалова В. Ф. Проскурнин А. А. Багаева Н. И. Березюк П. А. Громов We are grateful to A.N. Larionov for the isotopic dating of zircons. Our studies were supported by the Russian Foundation for Basic Research (Grants 16-05- 00176 and 19-05-00926). The study of A.B. Kuzmichev and M.K. Danukalova was part of the GIN RAS Research Programme (No. 0135-2019-0051). 2019-12-09 application/pdf https://www.gt-crust.ru/jour/article/view/934 https://doi.org/10.5800/GT-2019-10-4-0445 eng eng Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch https://www.gt-crust.ru/jour/article/view/934/466 Barbarin B., 1990. Granitoids: main petrogenetic classifications in relation to origin and tectonic setting. Geological Journal 25 (3–4), 227–238. https://doi.org/10.1002/gj.3350250306. Беззубцев В.В., Залялеев Р.Ш., Гончаров Ю.И., Сакович А.Б. Геологическая карта Горного Таймыра. Масштаб 1:500000. Красноярск, 1983. 6 л. Беззубцев В.В., Залялеев Р.Ш., Сакович А.Б. Геологическая карта Горного Таймыра. Масштаб 1:500000. Объяснительная записка. Красноярск, 1986. 177 с. Chappell B.W., White A.J.R., 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences 48 (4), 489–499. https://doi.org/10.1046/j.1440-0952.2001.00882.x. Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology 42 (11), 2033–2048. https://doi.org/10.1093/petrology/42.11.2033 Frost B.R., Frost C.D., 2008. A geochemical classification for feldspathic igneous rocks. Journal of Petrology 49 (11), 1955–1969. https://doi.org/10.1093/petrology/egn054. Кузьмичев А.Б., Данукалова М.К. Центрально-Таймырский складчатый пояс в докембрии: пассивная окраина Сибирского палеоконтинента в мезопротерозое, активная окраина в неопротерозое // Проблемы тектоники и геодинамики земной коры и мантии: Материалы L Тектонического совещания. Т. 1. М.: ГЕОС, 2018. С. 352–356. Ludwig K.R., 2001. Squid 1.02. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, vol. 2, 19 p. Ludwig K.R., 2003. Isoplot 3.00. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, vol. 4, 77 p. Государственная геологическая карта Российской Федерации. Масштаб 1:1000000 (третье поколение). Лист Т-45–48 (м. Челюскин). Объяснительная записка / Ред. А.А. Макарьев. СПб.: Картфабрика ВСЕГЕИ, 2013. 472 c. Марковский В.А., Кабаньков В.Я., Соболевская Р.Ф., Проскурнин В.Ф., Шнейдер Г.В., Лазарева Л.Н., Гаврилов А.Г. Государственная геологическая карта Российской Федерации. Масштаб 1:200000. Серия Таймырская. Листы: Т-47-XXVIII-XXX, T-48-XIX-XXX. Объяснительная записка. М., 2000. 186 с. Moyen J.F., Laurent O., Chelle-Michou C., Couzinié S., Vanderhaeghe O., Zeh A., Villaros A., Gardien V., 2017. Collision vs. subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth. Lithos 277, 154–177. https://doi.org/10.1016/j.lithos.2016.09.018. Pearce J.A., Harris N.B.W., Tindle A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25 (4), 956–983. https://doi.org/10.1093/petrology/25.4.956. Pease V., Vernikovsky V., 2000. The tectono-magmatic evolution of the Taimyr Peninsula: Further constraints from new ion-microprobe data. Polarforschung 68, 171–178. Погребицкий Ю.Е. Палеотектонический анализ Таймырской складчатой системы. Л.: Недра, 1971. 284 с. Priyatkina N., Collins W.J., Khudoley A., Zastrozhnov D., Ershova V., Chamberlain K., Shatsillo A., Proskurnin V., 2017. The Proterozoic evolution of northern Siberian craton margin: a comparison of U–Pb–Hf signatures from sedimentary units of the Taimyr orogenic belt and the Siberian platform. International Geology Review 59 (13), 1632–1656. https://doi.org/10.1080/00206814.2017.1289341. Проскурнин В.Ф. Гавриш А.В., Межубовский В.В., Трофимов В.Р., Егоров В.Н., Соболев Н.Н., Наумов М.В., Васильев Б.С., Нагайцева Н.Н., Мозолева И.Н., Черненко Н.Я., Межубовская О.А., Тарноградский В.Д., Багаева А.А., Кямяря В.В., Шманяк А.В., Заика Ю.В., Горбацевич Н.Р., Петрушков Б.С., Матюшев А.П., Гусев Е.А., Ромащенко О.Г. Государственная геологическая карта Российской Федерации. Масштаб 1:1000000 (третье поколение). Лист S-48 – оз. Таймыр (восточная часть). Объяснительная записка. СПб.: Картфабрика ВСЕГЕИ, 2009. 253 с. Proskurnin V.F., Vernikovsky V.A., Metelkin D.V., Petrushkov B.S., Vernikovskaya A.E., Gavrish A.V., Bagaeva A.A., Matushkin N.Yu., Vinogradova N.P., Larionov A.N., 2014. Rhyolite-granite association in the Central Taimyr zone: Evidence of accretionary-collisional events in the Neoproterozoic. Russian Geology and Geophysics 55 (1), 18–32. https://doi.org/10.1016/j.rgg.2013.12.002. Соболевская Р.Ф., Кабаньков В.Я. Стратиграфия кембрийских отложений Горного Таймыра. Труды НИИГА – ВНИИОкеангеология. Т. 228. СПб.: ВНИИОкеангеология, 2014. 43 с. Степанов Г.И., Тарутин О.А., Успенская И.Б., Щекотов М.В., Гарсков В.С. Геологическое строение и полезные ископаемые междуречья Ждановой, Фаддея и Преградной. Материалы к Государственной геологической карте масштаба 1:200000 (лист Т-48-XXXIV, XXXV, XXXVI) (Неопубликованный отчет). Л.: НИИГА, 1965. Уфлянд А.К., Натапов Л.М., Лопатин В.М., Чернов Д.В. О тектонической природе Таймыра // Геотектоника. 1991. № 6. C. 76–93. Vernikovskii V.A., Kotov A.B., Ponomarchuk V.A., Sal’nikova E.B., Kovach V.P., Travin A.V., 1997. Late Riphean – Vendian event in the Northern Taimyr evolution: evidence from Sm–Nd, Rb–Sr, and K–Ar dating of the garnet amphibolites of the Stanovaya ophiolite belt. Transactions (Doklady) of the Russian Academy of Sciences / Earth Science Sections 352 (1), 11–14. Верниковский В.А. Геодинамическая эволюция Таймырской складчатой области. Новосибирск: Издательство СО РАН, НИЦ ОИГГМ, 1996. 203 с. Vernikovsky V.A., Vernikovskaya A.E., 2001. Central Taimyr accretionary belt (Arctic Asia): Meso-Neoproterozoic tectonic evolution and Rodinia breakup. Precambrian Research 110 (1–4), 127–141. https://doi.org/10.1016/ S0301-9268(01)00184-X. Vernikovsky V., Vernikovskaya A., Pease V., Gee D., 2004. Neoproterozoic orogeny along the margins of Siberia. In: D.G. Gee, V. Pease (Eds.), The Neoproterozoic timanide orogeny of Eastern Baltica. Geological Society, London, Memoirs, vol. 30, p. 233–248. https://doi.org/10.1144/GSL.MEM.2004.030.01.18. Whalen J.B., Currie K.L., Chappell B.W., 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95 (4), 407–419. https://doi.org/10.1007/BF00402202. Williams I.S., 1998. U–Th–Pb geochronology by ion microprobe. In: M.A. McKibben, W.C. Shanks, W.I. Ridley (Eds.), Applications of microanalytical techniques to understanding mineralizing processes. Reviews in Economic Geology, vol. 7, p. 1–35. https://doi.org/10.5382/Rev.07.01. Забияка А.И., Забияка И.Д., Верниковский В.А., Сердюк С.С., Злобин М.Н. Геологическое строение и тектоническое развитие Северо-Восточного Таймыра. Новосибирск: Наука, 1986. 144 с. Zonenshain L.P., Kuzmin M.I., Natapov L.M., Page B.M. (Eds.), Geology of the USSR: A Plate-Tectonic Synthesis. AGU Geodynamics Series, vol. 21, 242 p. https://doi.org/10.1029/GD021. https://www.gt-crust.ru/jour/article/view/934 doi:10.5800/GT-2019-10-4-0445 Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Geodynamics & Tectonophysics; Том 10, № 4 (2019); 841-861 Геодинамика и тектонофизика; Том 10, № 4 (2019); 841-861 2078-502X 10.5800/GT-2019-10-4-0446 Сибирский палеоконтинент Taimyr Neoproterozoic collisional granite geochronology Siberia Paleocontinent Таймыр неопротерозой коллизионные граниты геохронология info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2019 ftjgat https://doi.org/10.5800/GT-2019-10-4-0445 https://doi.org/10.5800/GT-2019-10-4-0446 https://doi.org/10.1002/gj.3350250306 https://doi.org/10.1046/j.1440-0952.2001.00882.x https://doi.org/10.1093/petrology/42.11.2033 https://doi.org/10.1093/petro 2022-07-19T15:36:22Z Eastern part of the Central Taimyr belt is composed of Precambrian rocks penetrated by granites of the Snezhnaya complex (845–825 million years) and later overlain by mid‐Neoproterozoic sin‐ postorogenic sedimentary deposits of the Stanovaya‐Kolosova Group. Two competing concepts on the Precambrian history of the belt are dis‐ cussed. The first suggests that by the middle of the Neoproterozoic amalgamation of various terrains formed the Cen‐ tral Taimyr microcontinent, which afterwards collided with Siberia in Vendian. 2) According to the second point of view, which is shared by the authors of this article, the belt was part of the Siberian craton from at least the Mesopro‐ terozoic, and there is no suture that would separate it from the South Taimyr belt. To our surprise, during the field work in the South‐Eastern part of the Central Taimyr belt near the proposed “Vendian sutura”, assumed by the first concept, we found a granite pluton (Pregradnaya massif) intruding clastic rocks of Stanovaya‐Kolosova Group. Such setting is quite uncommon for the belt and contradicted to publications, describing the mentioned clastic rocks to overlay the granites and contain their debris. Dating of the pluton confirmed the field observations – its SRIMP zircon age has proved to be 609±2 Ma, an unusually young for this region. The pluton is located in a wide deformation zone separating the Precambrian rocks (to the northwest) and the Paleozoic deposits (to the southeast). Two minor bodies of similar porphyritic granite were found in the same zone further to the southwest, and it seemed logical to assume that a chain of Vendian granites marks boundary deformation zone. However, their dating (843±6 и 840±5 Ma) showed that they belong to Snezhnaya complex. In this paper, we discuss two Neoproterozoic magmatic ‘flare‐ups’ in the Central Taimyr Belt, which are dated at 845–825 and 640–610 Ma. Both ‘flare‐ups’ are evidenced by K‐rich per‐ aluminous granite batholiths intruded the upper crust. It is most probable that each flare‐up was ... Article in Journal/Newspaper Arctic Polarforschung Taimyr Таймыр Siberia Geodynamics & Tectonophysics (E-Journal) Kolosova ENVELOPE(50.267,50.267,-66.467,-66.467) Pregradnaya ENVELOPE(107.171,107.171,76.513,76.513) Geodynamics & Tectonophysics 10 4 841 861 |