Deep-focus earthquakes: spatial patterns, possible causes and geodynamic consequences

The spatial analysis was conducted to analyze the positions of earthquakes hypocenters in the transit zone of the upper mantle and the focal mechanisms of the strongest earthquakes in the subduction slabs of theOkhotskSeasegment of the Kuril-Kamchatka island arc and theJapanSeasegment of the Japanes...

Full description

Bibliographic Details
Published in:Geodynamics & Tectonophysics
Main Authors: A. N. Didenko, M. I. Kuzmin, А. Н. Диденко, М. И. Кузьмин
Format: Article in Journal/Newspaper
Language:Russian
Published: Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch 2018
Subjects:
Online Access:https://www.gt-crust.ru/jour/article/view/632
https://doi.org/10.5800/GT-2018-9-3-0378
id ftjgat:oai:oai.gtcrust.elpub.ru:article/632
record_format openpolar
institution Open Polar
collection Geodynamics & Tectonophysics (E-Journal)
op_collection_id ftjgat
language Russian
topic рециклинг вещества
focal mechanism
transit zone of the upper mantle
phase transition
Japanese and Kuril-Kamchatka island arcs
morphology of slabs
substance recycling
фокальный механизм
транзитная зона верхней мантии
фазовый переход
Японская и Курило-Камчатская островные дуги
морфология слэбов
spellingShingle рециклинг вещества
focal mechanism
transit zone of the upper mantle
phase transition
Japanese and Kuril-Kamchatka island arcs
morphology of slabs
substance recycling
фокальный механизм
транзитная зона верхней мантии
фазовый переход
Японская и Курило-Камчатская островные дуги
морфология слэбов
A. N. Didenko
M. I. Kuzmin
А. Н. Диденко
М. И. Кузьмин
Deep-focus earthquakes: spatial patterns, possible causes and geodynamic consequences
topic_facet рециклинг вещества
focal mechanism
transit zone of the upper mantle
phase transition
Japanese and Kuril-Kamchatka island arcs
morphology of slabs
substance recycling
фокальный механизм
транзитная зона верхней мантии
фазовый переход
Японская и Курило-Камчатская островные дуги
морфология слэбов
description The spatial analysis was conducted to analyze the positions of earthquakes hypocenters in the transit zone of the upper mantle and the focal mechanisms of the strongest earthquakes in the subduction slabs of theOkhotskSeasegment of the Kuril-Kamchatka island arc and theJapanSeasegment of the Japanese island arc. It revealed a significant difference in the morphology of these slabs, as well as in the positions of the earthquake hypocenters relative to the active and stagnating parts of the slabs and the forces that caused the earthquakes. Based on the seismic data presented in the article, it is confirmed that there are two types of subduction of the oceanic lithospheric plates in the mantle. The article discusses relationships between the subduction and various geological processes at the upper–lower mantle boundary. It considers possible causes (including those related to phase transitions) of deep-focus earthquakes, in case of which splitting of the oceanic lithospheric plates takes place at depths near the upper–lower mantle boundary. Subduction of the oceanic lithospheric plates and their splitting predetermine a possibility for the crustal elements to penetrate into the lower mantle and deeper into the D″ layer, wherein new plumes arise and transport the deep magma together with the recycled substance into the crust. Deep-focus earthquakes are a necessary link in the mechanism providing for the recycling of chemical elements in the crust – mantle – D″ layer system and thus leading to the formation of a wide range of mineral deposits. Пространственный анализ положения гипоцентров землетрясений в транзитной зоне верхней мантии и фокальных механизмов сильнейших из них в субдукционных слэбах охотоморского сегмента Курило-Камчатской и япономорского сегмента Японской островной дуги показал существенное различие в морфологии этих слэбов, в положении гипоцентров землетрясений относительно активной и стагнирующей части слэбов и сил, вызывающих эти землетрясения. Приведенные в работе сейсмические данные ...
format Article in Journal/Newspaper
author A. N. Didenko
M. I. Kuzmin
А. Н. Диденко
М. И. Кузьмин
author_facet A. N. Didenko
M. I. Kuzmin
А. Н. Диденко
М. И. Кузьмин
author_sort A. N. Didenko
title Deep-focus earthquakes: spatial patterns, possible causes and geodynamic consequences
title_short Deep-focus earthquakes: spatial patterns, possible causes and geodynamic consequences
title_full Deep-focus earthquakes: spatial patterns, possible causes and geodynamic consequences
title_fullStr Deep-focus earthquakes: spatial patterns, possible causes and geodynamic consequences
title_full_unstemmed Deep-focus earthquakes: spatial patterns, possible causes and geodynamic consequences
title_sort deep-focus earthquakes: spatial patterns, possible causes and geodynamic consequences
publisher Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch
publishDate 2018
url https://www.gt-crust.ru/jour/article/view/632
https://doi.org/10.5800/GT-2018-9-3-0378
genre Kamchatka
genre_facet Kamchatka
op_source Geodynamics & Tectonophysics; Том 9, № 3 (2018); 947-965
Геодинамика и тектонофизика; Том 9, № 3 (2018); 947-965
2078-502X
op_relation https://www.gt-crust.ru/jour/article/view/632/399
Argus D.F., Gordon R.G., DeMets C., 2011. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems 12 (11), Q11001. https://doi.org/10.1029/2011GC003751.
Батыгин К., Лафлин Г., Морбиделли А. Рожденные из хаоса // В мире науки. 2016. № 7. С. 16–27.
Bevis M., Taylor F.W., Schutz В.E., Recy J., Isacks B.L., Helu S., Singh R., Kendrick E., Stowell J., Taylor B., Calmantli S., 1995. Geodetic observations of very rapid convergence and back-arc extension at the Tonga arc. Nature 374 (6519), 249–251. https://doi.org/10.1038/374249a0.
Campbell I.H., Griffiths R.W., 2014. Did the formation of D″ cause the Archaean–Proterozoic transition? Earth and Planetary Science Letters 388, 1–8. https://doi.org/10.1016/j.epsl.2013.11.048.
Chebrova A.Y., Chebrov V.N., Gusev A.A., Lander A.V., Guseva E.M., Mityushkina S.V., Raevskaya A.A., 2015. The impacts of the Mw 8.3 Sea of Okhotsk earthquake of May 24, 2013 in Kamchatka and worldwide. Journal of Volcanology and Seismology 9 (4), 223–241. https://doi.org/10.1134/S074204631504003X.
Chen H., Xia Q-K., Ingrin J., Deloule E., Bi Y., 2017. Heterogeneous source components of intraplate basalts from NE China induced by the ongoing Pacific slab subduction. Earth and Planetary Science Letters 459, 208–220. https://doi.org/10.1016/j.epsl.2016.11.030.
Chen Y., Wen L., 2015. Global large deep-focus earthquakes: Source process and cascading failure of shear instability as a unified physical mechanism. Earth and Planetary Science Letters 423, 134–144. https://doi.org/10.1016/j.epsl.2015.04.031.
Condie K.C., 2011. Earth as an Evolving Planetary System. 2nd Edition. Elsevier, Amsterdam, 578 p.
Добрецов Н.Л. Основы тектоники и геодинамики. Новосибирск: Изд-во НГУ, 2011. 492 с.
Ekström G., Nettles M., Dziewoński A.M., 2012. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002.
Ernst R.E., 2014. Large Igneous Provinces. Cambridge University Press, Cambridge, 651 p.
Frohlich C., 2006. Deep Earthquakes. Cambridge University Press, Cambridge, 574 p.
Габуда С.П., Козлова С.Г. Неподеленные электронные пары и химическая связь в молекулярных и ионных кристаллах. Новосибирск: Изд-во СО РАН, 2009. 164 с.
Global CMT Catalog, 2017. Available from: http://www.globalcmt.org/CMTsearch.html.
Hofmann A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385 (6613), 219–229. https://doi.org/10.1038/385219a0.
Irifune T., Ringwood A.E., 1993. Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth and Planetary Science Letters 117 (1–2), 101–110. https://doi.org/10.1016/0012-821X(93)90120-X.
Kaminsky F.V., 2017. The Earth's Lower Mantle. Composition and Structure. Springer, Berlin, 331 p. https://doi.org/10.1007/978-3-319-55684-0.
Kanamori H., Anderson D.L, Heaton T.H., 1998. Frictional Melting During the Rupture of the 1994 Bolivian Earthquake. Science 279 (5352), 839–842. https://doi.org/10.1126/science.279.5352.839.
Karato S., Riedel M.R., Yuen D.A., 2001. Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes. Physics of the Earth and Planetary Interiors 127 (1–4), 83–108. https://doi.org/10.1016/S0031-9201(01)00223-0.
Khlebopros R.G., Zakhvataev V.E., Gabuda S.P., Kozlova S.G., Slepkov V.A., 2017. Possible mantle phase transitions by the formation of SiO2 peroxides: implications for mantle convection. Doklady Earth Sciences 473 (2), 416–418. https://doi.org/10.1134/S1028334X17040171.
Khlebopros R.G., Zakhvataev V.E., Slepkov V.P., Kuzmin M.I., 2016. On the possibility of phase transitions with the formation of SiO2 peroxide forms in the earth mantle and their effect on mantle convection. Journal of Structural Chemistry 57 (2), 417–421. https://doi.org/10.1134/S0022476616020256.
Kikuchi M., Kanamori H., 1994. The mechanism of the deep Bolivia earthquake of June 9, 1994. Geophysical Research Letters 21 (22), 2341–2344. https://doi.org/10.1029/94GL02483.
Kirby S.H., 1987. Localized polymorphic phase transformations in high‐pressure faults and applications to the physical mechanism of deep earthquakes. Journal of Geophysical Research: Solid Earth 92 (B13), 13789–13800. https://doi.org/10.1029/JB092iB13p13789.
Kirby S.H., Durham W.B., Stern L.A., 1991. Mantle phase changes and deep-earthquake faulting in subducting lithosphere. Science 252 (5003), 216–225. https://doi.org/10.1126/science.252.5003.216.
Kirby S.H., Stein S., Okal E.A., Rubie D.C., 1996. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Reviews of Geophysics 34 (2), 261–306. https://doi.org/10.1029/96RG01050.
Koulakov I.Y., Dobretsov N.L., Bushenkova N.A., Yakovlev A.V., 2011. Slab shape in subduction zones beneath the Kurile–Kamchatka and Aleutian arcs based on regional tomography results. Russian Geology and Geophysics 52 (6), 650–667. https://doi.org/10.1016/j.rgg.2011.05.008.
[Кузьмин М.И. Докембрийская история зарождения и эволюции Солнечной системы и Земли. Статья I // Геодинамика и тектонофизика. 2014. Т. 5. № 3. С. 625–640. https://doi.org/10.5800/GT-2014-5-3-0146.
Kuz’min M.I., Yarmolyuk V.V., Kravchinsky V.A., 2011. Phanerozoic within-plate magmatism of North Asia: Absolute paleogeographic reconstructions of the African large low-shear-velocity province. Geotectonics 45 (6), 415–438. https://doi.org/10.1134/S0016852111060045.
Kuzmin M.I., Yarmolyuk V.V., 2016a. Changes in the manner of tectonic movements under the Earth’s evolution. Doklady Earth Sciences 469 (2), 802–806. https://doi.org/10.1134/S1028334X16080249.
Kuzmin M.I., Yarmolyuk V.V., 2016b. Plate tectonics and mantle plumes as a basis of deep-seated Earth’s tectonic activity for the last 2 Ga. Russian Geology and Geophysics 57 (1), 8–21. https://doi.org/10.1016/j.rgg.2016.01.002.
Кузьмин М.И., Ярмолюк В.В. Биография Земли: основные этапы геологической истории // Природа. 2017. № 6. С. 12–25.
Kuzmin M.I., Yarmolyuk V.V., Ernst R.E., 2016. Tectonic activity of the early Earth (4.56-3.4 (2.7?) Ga). Russian Geology and Geophysics 57 (5), 639–652. https://doi.org/10.1016/j.rgg.2016.04.003.
Кузьмин М.И., Ярмолюк В.В., Котов А.Б., Горячев Н.А. Магматизм и металлогения ранних этапов развития Земли как отражение ее геологической эволюции // Геология и геофизика. 2018 (в печати).
Левин Б.В., Ким Чун Ун, Нагорных Т.В. Сейсмичность Приморья и Приамурья 1888–2008 гг. // Вестник ДВО РАН. 2008. № 6. С. 16–22.
Li C., van der Hilst R.D., Engdahl E.R., Burdick S., 2008. A new global model for P wave speed variations in Earth's mantle. Geochemistry, Geophysics, Geosystems 9 (5), Q05018. https://doi.org/10.1029/2007GC001806.
Лыскова Е.Л. Глубокофокусные землетрясения // Вопросы геофизики. Вып. 47 (Ученые записки СПбГУ № 447). СПб.: Изд-во СПбГУ, 2014. С. 62–74.
Maruyama S., 1994. Plume tectonics. Journal of Geological Society of Japan 100, 24–49.
Meade C., Jeanloz R., 1991. Deep-focus earthquakes and recycling of water into the Earth's mantle. Science 252 (5002), 68–72. https://doi.org/10.1126/science.252.5002.68.
National Earthquake Information Center (NEIC), 2017. Available from: http://earthquake.usgs.gov.
Ogawa M., 1987. Shear instability in a viscoelastic material as the cause of deep focus earthquakes. Journal of Geophysical Research: Solid Earth 92 (B13), 13801–13810. https://doi.org/10.1029/JB092iB13p13801.
Печерский Д.М., Диденко А.Н., Лыков А.В., Тихонов Л.В. Петромагнитная модель океанической литосферы // Физика Земли. 1993. № 12. С. 29–45.
Шерман С.И. Сейсмический процесс и прогноз землетрясений: тектонофизическая концепция. Новосибирск: Академическое издательство «Гео», 2014. 359 с.
Tatevossian R.E., Kosarev G.L., Bykova V.V., Matsievskii S.A., Ulomov I.V., Aptekman Z.Y., Vakarchuk R.N., 2014. A deep-focus earthquake with Mw=8.3 felt at a distance of 6500 km. Izvestiya, Physics of the Solid Earth 50 (3), 453–461. https://doi.org/10.1134/S1069351314030124.
Turner H.H., 1922. On the arrival of earthquake waves at the antipodes, and on the measurement of the focal depth of an earthquake. Monthly Notices of the Royal Astronomical Society, Geophysical Supplement 1 (1), 1–13. https://doi.org/10.1111/j.1365-246X.1922.tb05354.x.
Van der Hilst R.D., Engdahl E.R., Spakman W., 1993. Tomographic inversion of P and pP data for aspherical mantle structure below the northwest Pacific region. Geophysical Journal International 115 (1), 264–302. https://doi.org/10.1111/j.1365-246X.1993.tb05603.x.
Varga P., Rogozhin E.A., Süle B., Andreeva N.V., 2017. A study of the energy released by great (M≥7) deep focus seismic events with allowance for the Mw 8.3 earthquake of May 24, 2013 in the Sea of Okhotsk, Russia. Izvestiya, Physics of the Solid Earth 53 (3), 385–409. https://doi.org/10.1134/S1069351317030132.
Вернадский В.И. Несколько слов о ноосфере // В.И. Вернадский. Философские мысли натуралиста. М.: Наука, 1988. С. 503–513.
Yarmolyuk V.V., Kuzmin M.I., Vorontsov A.A., Khomutova M.Y., 2013. West Pacific-type convergent boundaries: Role in the crust growth history of the Central-Asian orogen. Journal of Asian Earth Sciences 62, 67–78. https://doi.org/10.1016/j.jseaes.2012.10.030.
Ye L., Lay T., Kanamori H., Koper K.D., 2013. Energy release of the 2013 Mw 8.3 Sea of Okhotsk earthquake and deep slab stress heterogeneity. Science 341 (6152), 1380–1384. https://doi.org/10.1126/science.1242032.
op_rights Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.5800/GT-2018-9-3-0378
https://doi.org/10.1029/2011GC003751
https://doi.org/10.1038/374249a0
https://doi.org/10.1134/S074204631504003X
https://doi.org/10.1016/j.epsl.2016.11.030
https://doi.org/10.1016/j.epsl.2015.04.031
http
container_title Geodynamics & Tectonophysics
container_volume 9
container_issue 3
container_start_page 947
op_container_end_page 965
_version_ 1766051363039477760
spelling ftjgat:oai:oai.gtcrust.elpub.ru:article/632 2023-05-15T16:59:09+02:00 Deep-focus earthquakes: spatial patterns, possible causes and geodynamic consequences Глубокофокусные землетрясения: пространственное распределение, возможные причины и геодинамические следствия A. N. Didenko M. I. Kuzmin А. Н. Диденко М. И. Кузьмин 2018-10-09 application/pdf https://www.gt-crust.ru/jour/article/view/632 https://doi.org/10.5800/GT-2018-9-3-0378 rus rus Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch https://www.gt-crust.ru/jour/article/view/632/399 Argus D.F., Gordon R.G., DeMets C., 2011. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems 12 (11), Q11001. https://doi.org/10.1029/2011GC003751. Батыгин К., Лафлин Г., Морбиделли А. Рожденные из хаоса // В мире науки. 2016. № 7. С. 16–27. Bevis M., Taylor F.W., Schutz В.E., Recy J., Isacks B.L., Helu S., Singh R., Kendrick E., Stowell J., Taylor B., Calmantli S., 1995. Geodetic observations of very rapid convergence and back-arc extension at the Tonga arc. Nature 374 (6519), 249–251. https://doi.org/10.1038/374249a0. Campbell I.H., Griffiths R.W., 2014. Did the formation of D″ cause the Archaean–Proterozoic transition? Earth and Planetary Science Letters 388, 1–8. https://doi.org/10.1016/j.epsl.2013.11.048. Chebrova A.Y., Chebrov V.N., Gusev A.A., Lander A.V., Guseva E.M., Mityushkina S.V., Raevskaya A.A., 2015. The impacts of the Mw 8.3 Sea of Okhotsk earthquake of May 24, 2013 in Kamchatka and worldwide. Journal of Volcanology and Seismology 9 (4), 223–241. https://doi.org/10.1134/S074204631504003X. Chen H., Xia Q-K., Ingrin J., Deloule E., Bi Y., 2017. Heterogeneous source components of intraplate basalts from NE China induced by the ongoing Pacific slab subduction. Earth and Planetary Science Letters 459, 208–220. https://doi.org/10.1016/j.epsl.2016.11.030. Chen Y., Wen L., 2015. Global large deep-focus earthquakes: Source process and cascading failure of shear instability as a unified physical mechanism. Earth and Planetary Science Letters 423, 134–144. https://doi.org/10.1016/j.epsl.2015.04.031. Condie K.C., 2011. Earth as an Evolving Planetary System. 2nd Edition. Elsevier, Amsterdam, 578 p. Добрецов Н.Л. Основы тектоники и геодинамики. Новосибирск: Изд-во НГУ, 2011. 492 с. Ekström G., Nettles M., Dziewoński A.M., 2012. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002. Ernst R.E., 2014. Large Igneous Provinces. Cambridge University Press, Cambridge, 651 p. Frohlich C., 2006. Deep Earthquakes. Cambridge University Press, Cambridge, 574 p. Габуда С.П., Козлова С.Г. Неподеленные электронные пары и химическая связь в молекулярных и ионных кристаллах. Новосибирск: Изд-во СО РАН, 2009. 164 с. Global CMT Catalog, 2017. Available from: http://www.globalcmt.org/CMTsearch.html. Hofmann A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385 (6613), 219–229. https://doi.org/10.1038/385219a0. Irifune T., Ringwood A.E., 1993. Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth and Planetary Science Letters 117 (1–2), 101–110. https://doi.org/10.1016/0012-821X(93)90120-X. Kaminsky F.V., 2017. The Earth's Lower Mantle. Composition and Structure. Springer, Berlin, 331 p. https://doi.org/10.1007/978-3-319-55684-0. Kanamori H., Anderson D.L, Heaton T.H., 1998. Frictional Melting During the Rupture of the 1994 Bolivian Earthquake. Science 279 (5352), 839–842. https://doi.org/10.1126/science.279.5352.839. Karato S., Riedel M.R., Yuen D.A., 2001. Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes. Physics of the Earth and Planetary Interiors 127 (1–4), 83–108. https://doi.org/10.1016/S0031-9201(01)00223-0. Khlebopros R.G., Zakhvataev V.E., Gabuda S.P., Kozlova S.G., Slepkov V.A., 2017. Possible mantle phase transitions by the formation of SiO2 peroxides: implications for mantle convection. Doklady Earth Sciences 473 (2), 416–418. https://doi.org/10.1134/S1028334X17040171. Khlebopros R.G., Zakhvataev V.E., Slepkov V.P., Kuzmin M.I., 2016. On the possibility of phase transitions with the formation of SiO2 peroxide forms in the earth mantle and their effect on mantle convection. Journal of Structural Chemistry 57 (2), 417–421. https://doi.org/10.1134/S0022476616020256. Kikuchi M., Kanamori H., 1994. The mechanism of the deep Bolivia earthquake of June 9, 1994. Geophysical Research Letters 21 (22), 2341–2344. https://doi.org/10.1029/94GL02483. Kirby S.H., 1987. Localized polymorphic phase transformations in high‐pressure faults and applications to the physical mechanism of deep earthquakes. Journal of Geophysical Research: Solid Earth 92 (B13), 13789–13800. https://doi.org/10.1029/JB092iB13p13789. Kirby S.H., Durham W.B., Stern L.A., 1991. Mantle phase changes and deep-earthquake faulting in subducting lithosphere. Science 252 (5003), 216–225. https://doi.org/10.1126/science.252.5003.216. Kirby S.H., Stein S., Okal E.A., Rubie D.C., 1996. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Reviews of Geophysics 34 (2), 261–306. https://doi.org/10.1029/96RG01050. Koulakov I.Y., Dobretsov N.L., Bushenkova N.A., Yakovlev A.V., 2011. Slab shape in subduction zones beneath the Kurile–Kamchatka and Aleutian arcs based on regional tomography results. Russian Geology and Geophysics 52 (6), 650–667. https://doi.org/10.1016/j.rgg.2011.05.008. [Кузьмин М.И. Докембрийская история зарождения и эволюции Солнечной системы и Земли. Статья I // Геодинамика и тектонофизика. 2014. Т. 5. № 3. С. 625–640. https://doi.org/10.5800/GT-2014-5-3-0146. Kuz’min M.I., Yarmolyuk V.V., Kravchinsky V.A., 2011. Phanerozoic within-plate magmatism of North Asia: Absolute paleogeographic reconstructions of the African large low-shear-velocity province. Geotectonics 45 (6), 415–438. https://doi.org/10.1134/S0016852111060045. Kuzmin M.I., Yarmolyuk V.V., 2016a. Changes in the manner of tectonic movements under the Earth’s evolution. Doklady Earth Sciences 469 (2), 802–806. https://doi.org/10.1134/S1028334X16080249. Kuzmin M.I., Yarmolyuk V.V., 2016b. Plate tectonics and mantle plumes as a basis of deep-seated Earth’s tectonic activity for the last 2 Ga. Russian Geology and Geophysics 57 (1), 8–21. https://doi.org/10.1016/j.rgg.2016.01.002. Кузьмин М.И., Ярмолюк В.В. Биография Земли: основные этапы геологической истории // Природа. 2017. № 6. С. 12–25. Kuzmin M.I., Yarmolyuk V.V., Ernst R.E., 2016. Tectonic activity of the early Earth (4.56-3.4 (2.7?) Ga). Russian Geology and Geophysics 57 (5), 639–652. https://doi.org/10.1016/j.rgg.2016.04.003. Кузьмин М.И., Ярмолюк В.В., Котов А.Б., Горячев Н.А. Магматизм и металлогения ранних этапов развития Земли как отражение ее геологической эволюции // Геология и геофизика. 2018 (в печати). Левин Б.В., Ким Чун Ун, Нагорных Т.В. Сейсмичность Приморья и Приамурья 1888–2008 гг. // Вестник ДВО РАН. 2008. № 6. С. 16–22. Li C., van der Hilst R.D., Engdahl E.R., Burdick S., 2008. A new global model for P wave speed variations in Earth's mantle. Geochemistry, Geophysics, Geosystems 9 (5), Q05018. https://doi.org/10.1029/2007GC001806. Лыскова Е.Л. Глубокофокусные землетрясения // Вопросы геофизики. Вып. 47 (Ученые записки СПбГУ № 447). СПб.: Изд-во СПбГУ, 2014. С. 62–74. Maruyama S., 1994. Plume tectonics. Journal of Geological Society of Japan 100, 24–49. Meade C., Jeanloz R., 1991. Deep-focus earthquakes and recycling of water into the Earth's mantle. Science 252 (5002), 68–72. https://doi.org/10.1126/science.252.5002.68. National Earthquake Information Center (NEIC), 2017. Available from: http://earthquake.usgs.gov. Ogawa M., 1987. Shear instability in a viscoelastic material as the cause of deep focus earthquakes. Journal of Geophysical Research: Solid Earth 92 (B13), 13801–13810. https://doi.org/10.1029/JB092iB13p13801. Печерский Д.М., Диденко А.Н., Лыков А.В., Тихонов Л.В. Петромагнитная модель океанической литосферы // Физика Земли. 1993. № 12. С. 29–45. Шерман С.И. Сейсмический процесс и прогноз землетрясений: тектонофизическая концепция. Новосибирск: Академическое издательство «Гео», 2014. 359 с. Tatevossian R.E., Kosarev G.L., Bykova V.V., Matsievskii S.A., Ulomov I.V., Aptekman Z.Y., Vakarchuk R.N., 2014. A deep-focus earthquake with Mw=8.3 felt at a distance of 6500 km. Izvestiya, Physics of the Solid Earth 50 (3), 453–461. https://doi.org/10.1134/S1069351314030124. Turner H.H., 1922. On the arrival of earthquake waves at the antipodes, and on the measurement of the focal depth of an earthquake. Monthly Notices of the Royal Astronomical Society, Geophysical Supplement 1 (1), 1–13. https://doi.org/10.1111/j.1365-246X.1922.tb05354.x. Van der Hilst R.D., Engdahl E.R., Spakman W., 1993. Tomographic inversion of P and pP data for aspherical mantle structure below the northwest Pacific region. Geophysical Journal International 115 (1), 264–302. https://doi.org/10.1111/j.1365-246X.1993.tb05603.x. Varga P., Rogozhin E.A., Süle B., Andreeva N.V., 2017. A study of the energy released by great (M≥7) deep focus seismic events with allowance for the Mw 8.3 earthquake of May 24, 2013 in the Sea of Okhotsk, Russia. Izvestiya, Physics of the Solid Earth 53 (3), 385–409. https://doi.org/10.1134/S1069351317030132. Вернадский В.И. Несколько слов о ноосфере // В.И. Вернадский. Философские мысли натуралиста. М.: Наука, 1988. С. 503–513. Yarmolyuk V.V., Kuzmin M.I., Vorontsov A.A., Khomutova M.Y., 2013. West Pacific-type convergent boundaries: Role in the crust growth history of the Central-Asian orogen. Journal of Asian Earth Sciences 62, 67–78. https://doi.org/10.1016/j.jseaes.2012.10.030. Ye L., Lay T., Kanamori H., Koper K.D., 2013. Energy release of the 2013 Mw 8.3 Sea of Okhotsk earthquake and deep slab stress heterogeneity. Science 341 (6152), 1380–1384. https://doi.org/10.1126/science.1242032. Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Geodynamics & Tectonophysics; Том 9, № 3 (2018); 947-965 Геодинамика и тектонофизика; Том 9, № 3 (2018); 947-965 2078-502X рециклинг вещества focal mechanism transit zone of the upper mantle phase transition Japanese and Kuril-Kamchatka island arcs morphology of slabs substance recycling фокальный механизм транзитная зона верхней мантии фазовый переход Японская и Курило-Камчатская островные дуги морфология слэбов info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2018 ftjgat https://doi.org/10.5800/GT-2018-9-3-0378 https://doi.org/10.1029/2011GC003751 https://doi.org/10.1038/374249a0 https://doi.org/10.1134/S074204631504003X https://doi.org/10.1016/j.epsl.2016.11.030 https://doi.org/10.1016/j.epsl.2015.04.031 http 2022-07-19T15:36:33Z The spatial analysis was conducted to analyze the positions of earthquakes hypocenters in the transit zone of the upper mantle and the focal mechanisms of the strongest earthquakes in the subduction slabs of theOkhotskSeasegment of the Kuril-Kamchatka island arc and theJapanSeasegment of the Japanese island arc. It revealed a significant difference in the morphology of these slabs, as well as in the positions of the earthquake hypocenters relative to the active and stagnating parts of the slabs and the forces that caused the earthquakes. Based on the seismic data presented in the article, it is confirmed that there are two types of subduction of the oceanic lithospheric plates in the mantle. The article discusses relationships between the subduction and various geological processes at the upper–lower mantle boundary. It considers possible causes (including those related to phase transitions) of deep-focus earthquakes, in case of which splitting of the oceanic lithospheric plates takes place at depths near the upper–lower mantle boundary. Subduction of the oceanic lithospheric plates and their splitting predetermine a possibility for the crustal elements to penetrate into the lower mantle and deeper into the D″ layer, wherein new plumes arise and transport the deep magma together with the recycled substance into the crust. Deep-focus earthquakes are a necessary link in the mechanism providing for the recycling of chemical elements in the crust – mantle – D″ layer system and thus leading to the formation of a wide range of mineral deposits. Пространственный анализ положения гипоцентров землетрясений в транзитной зоне верхней мантии и фокальных механизмов сильнейших из них в субдукционных слэбах охотоморского сегмента Курило-Камчатской и япономорского сегмента Японской островной дуги показал существенное различие в морфологии этих слэбов, в положении гипоцентров землетрясений относительно активной и стагнирующей части слэбов и сил, вызывающих эти землетрясения. Приведенные в работе сейсмические данные ... Article in Journal/Newspaper Kamchatka Geodynamics & Tectonophysics (E-Journal) Geodynamics & Tectonophysics 9 3 947 965