Rift systems of the Russian Eastern Arctic shelf and Arctic deep water basins: link between geological history and geodynamics

In our study, we have developed a new tectonic scheme of the Arctic Ocean, which is based mainly on seismic profiles obtained in the Arctic-2011, Arctic-2012 and Arctic-2014 Projects implemented in Russia. Having interpreted many seismic profiles, we propose a new seismic stratigraphy of the Arctic...

Full description

Bibliographic Details
Published in:Geodynamics & Tectonophysics
Main Authors: A. M. Nikishin, E. I. Petrov, N. A. Malyshev, V. P. Ershova, А. М. Никишин, Е. И. Петров, Н. А. Малышев, В. П. Ершова
Format: Article in Journal/Newspaper
Language:Russian
Published: Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch 2017
Subjects:
Online Access:https://www.gt-crust.ru/jour/article/view/331
https://doi.org/10.5800/GT-2017-8-1-0231
id ftjgat:oai:oai.gtcrust.elpub.ru:article/331
record_format openpolar
institution Open Polar
collection Geodynamics & Tectonophysics (E-Journal)
op_collection_id ftjgat
language Russian
topic сейсмический профиль
Eurasia Basin
North Chukchi Basin
Laptev Sea Basin
East Siberian Sea Basin
Podvodnikov Basin
Lomonosov Ridge
Mendeleev Ridge
Gakkel Ridge
Makarov Basin
rift
sedimentary basin
seismic line
Евразийский бассейн
Северо-Чукотский бассейн
бассейн моря Лаптевых
бассейн Восточно-Сибирского моря
бассейн Подводников
хребет Ломоносова
хребет Менделеева
хребет Гаккеля
бассейн Макарова
рифт
осадочный бассейн
spellingShingle сейсмический профиль
Eurasia Basin
North Chukchi Basin
Laptev Sea Basin
East Siberian Sea Basin
Podvodnikov Basin
Lomonosov Ridge
Mendeleev Ridge
Gakkel Ridge
Makarov Basin
rift
sedimentary basin
seismic line
Евразийский бассейн
Северо-Чукотский бассейн
бассейн моря Лаптевых
бассейн Восточно-Сибирского моря
бассейн Подводников
хребет Ломоносова
хребет Менделеева
хребет Гаккеля
бассейн Макарова
рифт
осадочный бассейн
A. M. Nikishin
E. I. Petrov
N. A. Malyshev
V. P. Ershova
А. М. Никишин
Е. И. Петров
Н. А. Малышев
В. П. Ершова
Rift systems of the Russian Eastern Arctic shelf and Arctic deep water basins: link between geological history and geodynamics
topic_facet сейсмический профиль
Eurasia Basin
North Chukchi Basin
Laptev Sea Basin
East Siberian Sea Basin
Podvodnikov Basin
Lomonosov Ridge
Mendeleev Ridge
Gakkel Ridge
Makarov Basin
rift
sedimentary basin
seismic line
Евразийский бассейн
Северо-Чукотский бассейн
бассейн моря Лаптевых
бассейн Восточно-Сибирского моря
бассейн Подводников
хребет Ломоносова
хребет Менделеева
хребет Гаккеля
бассейн Макарова
рифт
осадочный бассейн
description In our study, we have developed a new tectonic scheme of the Arctic Ocean, which is based mainly on seismic profiles obtained in the Arctic-2011, Arctic-2012 and Arctic-2014 Projects implemented in Russia. Having interpreted many seismic profiles, we propose a new seismic stratigraphy of the Arctic Ocean. Our main conclusions are drawn from the interpretation of the seismic profiles and the analysis of the regional geological data. The results of our study show that rift systems within the Laptev, the East Siberian and the Chukchi Seas were formed not earlier than Aptian. The geological structure of the Eurasian, Podvodnikov, Toll and Makarov Basins is described in this paper. Having synthesized all the available data on the study area, we propose the following model of the geological history of the Arctic Ocean: 1. The Canada Basin formed till the Aptian (probably, during Hauterivian-Barremian time). 2. During the Aptian-Albian, large-scale tectonic and magmatic events took place, including plume magmatism in the area of the De Long Islands, Mendeleev Ridge and other regions. Continental rifting started after the completion of the Verkhoyansk-Chukotka orogenу, and rifting occurred on the shelf of the Laptev, East Siberian, North Chukchi and South Chukchi basins, and the Chukchi Plateau; simultaneously, continental rifting started in the Podvodnikov and Toll basins. 3. Perhaps the Late Cretaceous rifting continued in the Podvodnikov and Toll basins. 4. At the end of the Late Cretaceous and Paleocene, the Makarov basin was formed by rifting, although local spreading of oceanic crust during its formation cannot be excluded. 5. The Eurasian Basin started to open in the Early Eocene. We, of course, accept that our model of the geological history of the Arctic Ocean, being preliminary and debatable, may need further refining. In this paper, we have shown a link between the continental rift systems on the shelf and the formation history of the Arctic Ocean. На основе российских сейсмических профилей, полученных в ...
format Article in Journal/Newspaper
author A. M. Nikishin
E. I. Petrov
N. A. Malyshev
V. P. Ershova
А. М. Никишин
Е. И. Петров
Н. А. Малышев
В. П. Ершова
author_facet A. M. Nikishin
E. I. Petrov
N. A. Malyshev
V. P. Ershova
А. М. Никишин
Е. И. Петров
Н. А. Малышев
В. П. Ершова
author_sort A. M. Nikishin
title Rift systems of the Russian Eastern Arctic shelf and Arctic deep water basins: link between geological history and geodynamics
title_short Rift systems of the Russian Eastern Arctic shelf and Arctic deep water basins: link between geological history and geodynamics
title_full Rift systems of the Russian Eastern Arctic shelf and Arctic deep water basins: link between geological history and geodynamics
title_fullStr Rift systems of the Russian Eastern Arctic shelf and Arctic deep water basins: link between geological history and geodynamics
title_full_unstemmed Rift systems of the Russian Eastern Arctic shelf and Arctic deep water basins: link between geological history and geodynamics
title_sort rift systems of the russian eastern arctic shelf and arctic deep water basins: link between geological history and geodynamics
publisher Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch
publishDate 2017
url https://www.gt-crust.ru/jour/article/view/331
https://doi.org/10.5800/GT-2017-8-1-0231
long_lat ENVELOPE(166.000,166.000,74.000,74.000)
ENVELOPE(90.000,90.000,87.000,87.000)
ENVELOPE(170.000,170.000,87.000,87.000)
ENVELOPE(133.400,133.400,67.544,67.544)
ENVELOPE(80.000,80.000,87.000,87.000)
ENVELOPE(153.000,153.000,76.500,76.500)
ENVELOPE(-93.035,-93.035,56.912,56.912)
ENVELOPE(168.000,168.000,80.500,80.500)
geographic Arctic
Arctic Ocean
Laptev Sea
Canada
East Siberian Sea
Gakkel Ridge
Makarov Basin
Verkhoyansk
Eurasia Basin
De Long Islands
Long Islands
Podvodnikov Basin
geographic_facet Arctic
Arctic Ocean
Laptev Sea
Canada
East Siberian Sea
Gakkel Ridge
Makarov Basin
Verkhoyansk
Eurasia Basin
De Long Islands
Long Islands
Podvodnikov Basin
genre Arctic
Arctic
Arctic Ocean
canada basin
Chukchi
Chukotka
De Long Islands
East Siberian Sea
laptev
Laptev Sea
Lomonosov Ridge
makarov basin
genre_facet Arctic
Arctic
Arctic Ocean
canada basin
Chukchi
Chukotka
De Long Islands
East Siberian Sea
laptev
Laptev Sea
Lomonosov Ridge
makarov basin
op_source Geodynamics & Tectonophysics; Том 8, № 1 (2017); 11-43
Геодинамика и тектонофизика; Том 8, № 1 (2017); 11-43
2078-502X
op_relation https://www.gt-crust.ru/jour/article/view/331/247
Akinin V.V., 2012. Late Mesozoic and Cenozoic Magmatism and Lower Crust Modifications in the Northern Framing of Pacific. Doctor of Sci. dissertation. IGEM RAS, Moscow, 320 p. (in Russian) [Акинин В.В. Позднемезозойский и кайнозойский магматизм и преобразование нижней коры в северном обрамлении Пацифики: Дис. . докт. геол.-мин. наук. М.: ИГЕМ РАН, 2012. 320 с.].
Alvey A., Gaina C., Kushner N.J., Torsvik T.H., 2008. Integrated crustal thickness mapping and plate reconstructions for the high Arctic. Earth and Planetary Science Letters 274 (3–4), 310–321. https://doi.org/10.1016/j.epsl.2008.07.036.
Andronikov A., Mukasa S., Mayer L.A., Brumley K., 2008. First Recovery of submarine basalts from the Chukchi Borderland and Alpha / Mendeleev Ridge region, Arctic Ocean. Eos, Transactions American Geophysical Union 89 (53), Fall Meet. Suppl., Abstract V41D-2124.
Arrigoni V., 2008. Origin and Evolution of the Chukchi Borderland. A Thesis. Submitted to the Office of Graduate Stu­dies of Texas A&M University in partial fulfillment of the requirements for the degree of Master of Science. 64 p.
Backman J., Jakobsson M., Frank M., Sangiorgi F., Brinkhuis H., Stickley C., O’Regan M., Løvlie R., Pälike H., Spofforth D., Gattacecca J., Moran K., King J., Heil C., 2008. Age model and core-seismic integration for the Cenozoic Arctic Coring Expedition sediments from the Lomonosov Ridge. Paleoceanography 23 (1), PA1S03. https://doi.org/10.1029/2007PA001476.
Brumley K., 2009. Tectonic geomorphology of the Chukchi Borderland: constraint for tectonic reconstruction models. A Thesis presented to the faculty of the University of Alaska Fairbanks in partial fulfillment of the requirements for the degree of Master of Science, 124 p.
Brumley K., 2014. Geologic history of the Chukchi Borderland, Arctic Ocean. A dissertation submitted to the department of geology and environmental sciences and the committee on graduate studies of Stanford university in partial fulfillment of the requirements for the degree of Doctor of philosophy. Available from: http://purl.stanford.edu/hz857zk1405.
Bruvoll V., Kristoffersen Y., Coakley B.J., Hopper J.R., 2010. Hemipelagic deposits on the Mendeleev and northwestern Alpha submarine Ridges in the Arctic Ocean: acoustic stratigraphy, depositional environment and an inter-ridge correlation calibrated by the ACEX results. Marine Geophysical Researches 31 (3), 149–171. https://doi.org/10.1007/s11001-010-9094-9.
Bruvoll V., Kristoffersen Y., Coakley B.J., Hopper J.R., Planke S., Kandilarov A., 2012. The nature of the acoustic basement on Mendeleev and northwestern Alpha ridges, Arctic Ocean. Tectonophysics 514–517, 123–145. https://doi.org/10.1016/j.tecto.2011.10.015.
Chian D., Jackson H.R., Hutchinson D.R., Shimeld J.W., Oakey G.N., Lebedeva-Ivanova N., Li Q. Saltus R.W., Mosher D.C., 2016. Distribution of crustal types in Canada Basin, Arctic Ocean. Tectonophysics 691 (Part A), 8–30. https://doi.org/10.1016/j.tecto.2016.01.038.
Coakley B., Ilhan I., 2012. Developing geophysical constraints on the history of the Amerasian Basin of the Arctic Ocean. Offshore Technology Conference, OTC 23795.
Cochran J.R., 2008. Seamount volcanism along the Gakkel Ridge, Arctic Ocean. Geophysical Journal International 174 (3), 1153–1173. https://doi.org/10.1111/j.1365-246X.2008.03860.x.
Corfu F., Polteau S., Planke S., Faleide J.I., Svensen H., Zayoncheck A., Stolbov N., 2013. U–Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea large igneous province. Geological Magazine 150 (06), 1127–1135. https://doi.org/10.1017/S0016756813000162.
Dick H.J., Lin J., Schouten H., 2003. An ultraslow-spreading class of ocean ridge. Nature 426 (6965), 405–412. https://doi.org/10.1038/nature02128.
Dobretsov N.L., Vernikovsky V.A., Karyakin Yu.V., Korago E.A., Simonov V.A., 2013. Mesozoic-Cenozoic volcanism and geodynamic events in the Central and Eastern Arctic. Russian Geology and Geophysics 54 (8), 874–887. https://doi.org/10.1016/j.rgg.2013.07.008.
Doré A.G., Lundin E.R., Gibbons A., Sømme T.O., Tørudbakken B.O., 2016. Transform margins of the Arctic: a synthesis and re-evaluation. In: M. Nemćok, S. Rybár, S.T. Sinha, S.A. Hermeston, L. Ledvényiové (Eds.), Transform margins: development, controls and petroleum systems. Geological Society, London, Special Publications, vol. 431, p. 63–94. https://doi.org/10.1144/SP431.8.
Døssing A., Jackson H.R., Matzka J., Einarsson I., Rasmussen T.M., Olesen A.V., Brozena J.M., 2013. On the origin of the Amerasia Basin and the High Arctic Large Igneous Province – results of new aeromagnetic data. Earth and Planetary Science Letters 363, 219–230. https://doi.org/10.1016/j.epsl.2012.12.013.
Dove D., Coakley B., Hopper J., Kristoffersen Y., Team H.G., 2010. Bathymetry, controlled source seismic and gravity observations of the Mendeleev ridge; implications for ridge structure, origin, and regional tectonics. Geophysical Journal International 183 (2), 481–502. https://doi.org/10.1111/j.1365-246X.2010.04746.x.
Drachev S.S., 2016. Fold belts and sedimentary basins of the Eurasian Arctic. Arktos 2, 21. https://doi.org/10.1007/s41063-015-0014-8.
Drachev S.S., Malyshev N.A., Nikishin A.M., 2010. Tectonic history and petroleum geology of the Russian Arctic Shelves: an overview. In: B.A. Vining, S.C. Pickering (Eds.), Petroleum Geology: From Mature Basins to New Frontiers – Proceedings of the 7th Petroleum Geology Conference. Geological Society, London, Petroleum Geology Conference series, vol. 7, p. 591–619. https://doi.org/10.1144/0070591.
Drachev S., Saunders A.D., 2006. The Early Cretaceous Arctic Lip: its geodynamic setting and implications for Canada Basin opening. In: R.A. Scott, D.K. Thurston (Eds.), Proceedings of the Fourth International Conference on Arctic Margins ICAM IV. US Department of the Interior, p. 216–223.
Ehlers B.-M., Jokat W., 2009. Subsidence and crustal roughness of ultra-slow spreading ridges in the northern North Atlantic and in the Arctic Ocean. Geophysical Journal International 177 (2), 451–462. https://doi.org/10.1111/j.1365-246X.2009.04078.x.
Elkins L.J., Sims K.W.W., Prytulak J., Blichert-Toft J., Elliott T., Blusztajn J., Fretzdorff S., Reagan M., Haase K., Humphris S., Schilling J.-G., 2014. Melt generation beneath Arctic Ridges: Implications from U decay series disequilibria in the Mohns, Knipovich, and Gakkel Ridges. Geochimica et Cosmochimica Acta 127, 140–170. https://doi.org/10.1016/j.gca.2013.11.031.
Evangelatos J., Mosher D.C., 2016. Seismic stratigraphy, structure and morphology of Makarov Basin and surrounding regions: tectonic implications. Marine Geology 374, 1–13. https://doi.org/10.1016/j.margeo.2016.01.013.
Franke D., 2013. Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins. Marine and Petroleum Geology 43, 63–87. https://doi.org/10.1016/j.marpetgeo.2012.11.003.
Gaina C., Medvedev S., Torsvik T.H., Koulakov I., Werner S.C., 2014. 4D Arctic: a glimpse into the structure and evolution of the Arctic in the light of new geophysical maps, plate tectonics and tomographic models. Surveys in Geophysics 35 (5), 1095–1122. https://doi.org/10.1007/s10712-013-9254-y.
Gaina G., Nikishin A.M., Petrov E.I., 2015. Ultraslow spreading, ridge relocation and compressional events in the East Arctic region – A link to the Eurekan orogeny? Arktos 1, 16. https://doi.org/10.1007/s41063-015-0006-8.
Gaina C., Werner S.C., Saltus R., Maus S., 2011. Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic. In: A.M. Spencer, A.F. Embry, D.L. Gautier, A.V. Stoupakova, K. Sørensen (Eds.), Arctic Petroleum Geology. Geological Society, London, Memoirs, vol. 35, p. 39–48. https://doi.org/10.1144/M35.3.
Glebovsky V.Yu., Astafurova E.G., Chernykh A.A., Korneva M.A., Kaminsky V.D., Poselov V.A., 2013. Thickness of the Earth's crust in the deep Arctic Ocean: Results of a 3D gravity modeling. Russian Geology and Geophysics 54 (3), 247–262. https://doi.org/10.1016/j.rgg.2013.02.001.
Glebovsky V.Yu., Kaminsky V.D., Minakov A.N., Merkur’ev S.A., Childers V.A., Brozena J.M., 2006. Formation of the Eurasia Basin in the Arctic Ocean as inferred from geohistorical analysis of the anomalous magnetic field. Geotectonics 40 (4), 263–281. https://doi.org/10.1134/S0016852106040029.
Grantz A., Scott R.A., Drachev S.S., Moore T.E., Valin Z.C., 2011. Chapter 2. Sedimentary successions of the Arctic Region (58–64° to 90°N) that may be prospective for hydrocarbons. In: A.M. Spencer, A.F. Embry, D.L. Gautier, A.V. Stoupakova, K. Sørensen (Eds.), Arctic Petroleum Geology. Geological Society, London, Memoirs, vol. 35, p. 17–37. https://doi.org/10.1144/M35.2.
Hegewald A., Jokat W., 2013. Tectonic and sedimentary structures in the northern Chukchi region, Arctic Ocean. Journal of Geophysical Research: Solid Earth 118 (7), 3285–3296. https://doi.org/10.1002/jgrb.50282.
Helwig J., Kumar N., Emmet P., Dinkelman M.G., 2011. Regional seismic interpretation of crustal framework, Canadian Arctic passive margin, Beaufort Sea, with comments on petroleum potential. In: A.M. Spencer, A.F. Embry, D.L. Gautier, A.V. Stoupakova, K. Sørensen (Eds.), Arctic Petroleum Geology. Geological Society, London, Memoirs, vol. 35, p. 527–543. https://doi.org/10.1144/M35.35.
Ikhsanov B., 2014. Late Mesozoic and Cenozoic Deformations of Sedimentary Basins of Chukchi Sea. PhD Thesis. Moscow State University, Geological Faculty, Moscow, 116 p. (in Russian) [Ихсанов Б.И. Позднемезозойские и кайнозойские деформации осадочных бассейнов акватории Чукотского моря: Дис. . канд. геол.-мин. наук. М: МГУ, геологический факультет, 2014. 116 с.].
Jakobsson M., Andreassen K., Bjarnadóttir L.R., Dove D., Dowdeswell J.A., England J.H., Funder S., Hogan K., Ingólfsson Ó., Jennings A., Larsen N.K., Kirchner N., Landvik J.Y., Mayer L., Mikkelsen N., Möller P., Niessen F., Nilsson J., O’Regan M., Polyak L., Nørgaard-Pedersen N., Stein R., 2014. Arctic Ocean glacial history. Quaternary Science Reviews 92, 40–67. https://doi.org/10.1016/j.quascirev.2013.07.033.
Jakobsson M., Polyak L., Edwards M., Kleman J., Coakley B., 2008. Glacial geomorphology of the Central Arctic Ocean: the Chukchi Borderland and the Lomonosov Ridge. Earth Surface Processes and Landforms 33 (4), 526–545. https://doi.org/10.1002/esp.1667.
Jokat W., 2003. Seismic investigations along the western sector of Alpha Ridge, Central Arctic Ocean. Geophysical Journal International 152 (1), 185–201. https://doi.org/10.1046/j.1365-246X.2003.01839.x.
Jokat W., 2005. The sedimentary structure of the Lomonosov Ridge between 88°N and 80°N. Geophysical Journal International 163 (2), 698–726. https://doi.org/10.1111/j.1365-246X.2005.02786.x.
Jokat W., Ickrath M., 2015. Structure of ridges and basins off East Siberia along 81°N, Arctic Ocean. Marine and Petro­leum Geology 64, 222–232. https://doi.org/10.1016/j.marpetgeo.2015.02.047.
Jokat W., Ickrath M., O’Connor J., 2013. Seismic transect across the Lomonosov and Mendeleev Ridges: Constraints on the geological evolution of the Amerasia Basin, Arctic Ocean. Geophysical Research Letters 40 (19), 5047–5051. https://doi.org/10.1002/grl.50975.
Khoroshilova M.A., Franke D., Kirillova T., Mouly B., Nikishin A.M., 2014. Dating and correlation of reference seismic horizons in the Laptev Sea basin. Moscow University Geology Bulletin 69 (5), 271–280. https://doi.org/10.3103/S0145875214050032.
Kim B.I., Glezer Z.I., 2007. Sedimentary cover of the Lomonosov Ridge: stratigraphy, structure, deposition history, and ages of seismic facies units. Stratigraphy and Geological Correlation 15 (4), 401–420. https://doi.org/10.1134/S0869593807040053.
Kos’ko M.K., Sobolev N.N., Korago E.A., Proskurnin V.F., Stolbov N.M., 2013. Geology of Novosibirskian Islands – a basis for interpretation of geophysical data on the Eastern Arctic shelf of Russia. Neftegazovaya Geologiya. Teoriya i Praktika 8 (2), Article 17 (in Russian) [Косько М.К., Соболев Н.Н., Кораго Е.А., Проскурнин В.Ф., Столбов Н.М. Геология Новосибирских островов – основа интерпретации геофизических данных по Восточно-Арк­тическому шельфу России // Нефтегазовая геология. Теория и практика. 2013. Т. 8. № 2. Статья 17]. Available from: http://www.ngtp.ru/rub/5/17_2013.pdf.
Kos’ko M.K., Cecile M.P., Harrison J.C., Ganelin V.G., Khandoshko N.V., Lopatin B.G., 1993. Geology of Wrangel Island, Between Chukchi and East Siberian Seas, Northeastern Russia. Geological Survey Canada Bulletin, vol. 461, 101 p.
Kos’ko M.K., Trufanov G.V., 2002. Middle Cretaceous to Eopleistocene Sequences on the New Siberian Islands: an approach to interpret offshore seismic. Marine and Petroleum Geology 19 (7), 901–919. https://doi.org/10.1016/S0264-8172(02)00057-0.
Kumar N., Granath J.W., Emmet P.A., Helwig J.A., Dinkelman M.G., 2011. Stratigraphic and tectonic framework of the US Chukchi Shelf: exploration insights from a new regional deep-seismic reflection survey. In: A.M. Spencer, A.F. Embry, D.L. Gautier, A.V. Stoupakova, K. Sørensen (Eds.), Arctic Petroleum Geology. Geological Society, London, Memoirs, vol. 35, p. 501–508. https://doi.org/10.1144/M35.33.
Kuzmichev A.B., 2009. Where does the South Anyui suture go in the New Siberian islands and Laptev Sea? Implications for the Amerasia basin origin. Tectonophysics 463 (1–4), 86–108. https://doi.org/10.1016/j.tecto.2008.09.017.
Kuzmichev A.B., Aleksandrova G.N., Herman A.B., 2009. Aptian–Albian coaliferous sediments of Kotel’nyi Island (New Siberian Islands): new data on the section structure and ignimbrite volcanism. Stratigraphy and Geological Correlation 17 (5), 519–543. https://doi.org/10.1134/S0869593809050050.
Kuzmichev A.B., Aleksandrova G.N., Herman A.B., Danukalova M.K., Simakova A.N., 2013. Paleogene–Neogene sediments of Bel’kov Island (New Siberian Islands): characteristics of sedimentary cover in the Eastern Laptev Shelf. Strati­graphy and Geological Correlation 21 (4), 421–444. https://doi.org/10.1134/S0869593813040059.
op_rights Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.5800/GT-2017-8-1-0231
https://doi.org/10.1016/j.epsl.2008.07.036
https://doi.org/10.1029/2007PA001476
https://doi.org/10.1007/s11001-010-9094-9
https://doi.org/10.1016/j.tecto.2011.10.015
https://doi.org/10.1016/j.tecto.2016.0
container_title Geodynamics & Tectonophysics
container_volume 8
container_issue 1
container_start_page 11
op_container_end_page 43
_version_ 1766297591220273152
spelling ftjgat:oai:oai.gtcrust.elpub.ru:article/331 2023-05-15T14:25:10+02:00 Rift systems of the Russian Eastern Arctic shelf and Arctic deep water basins: link between geological history and geodynamics Рифтовые системы шельфа Российской Восточной Арктики и арктического глубоководного бассейна: связь геологической истории и геодинамики A. M. Nikishin E. I. Petrov N. A. Malyshev V. P. Ershova А. М. Никишин Е. И. Петров Н. А. Малышев В. П. Ершова 2017-03-23 application/pdf https://www.gt-crust.ru/jour/article/view/331 https://doi.org/10.5800/GT-2017-8-1-0231 rus rus Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch https://www.gt-crust.ru/jour/article/view/331/247 Akinin V.V., 2012. Late Mesozoic and Cenozoic Magmatism and Lower Crust Modifications in the Northern Framing of Pacific. Doctor of Sci. dissertation. IGEM RAS, Moscow, 320 p. (in Russian) [Акинин В.В. Позднемезозойский и кайнозойский магматизм и преобразование нижней коры в северном обрамлении Пацифики: Дис. . докт. геол.-мин. наук. М.: ИГЕМ РАН, 2012. 320 с.]. Alvey A., Gaina C., Kushner N.J., Torsvik T.H., 2008. Integrated crustal thickness mapping and plate reconstructions for the high Arctic. Earth and Planetary Science Letters 274 (3–4), 310–321. https://doi.org/10.1016/j.epsl.2008.07.036. Andronikov A., Mukasa S., Mayer L.A., Brumley K., 2008. First Recovery of submarine basalts from the Chukchi Borderland and Alpha / Mendeleev Ridge region, Arctic Ocean. Eos, Transactions American Geophysical Union 89 (53), Fall Meet. Suppl., Abstract V41D-2124. Arrigoni V., 2008. Origin and Evolution of the Chukchi Borderland. A Thesis. Submitted to the Office of Graduate Stu­dies of Texas A&M University in partial fulfillment of the requirements for the degree of Master of Science. 64 p. Backman J., Jakobsson M., Frank M., Sangiorgi F., Brinkhuis H., Stickley C., O’Regan M., Løvlie R., Pälike H., Spofforth D., Gattacecca J., Moran K., King J., Heil C., 2008. Age model and core-seismic integration for the Cenozoic Arctic Coring Expedition sediments from the Lomonosov Ridge. Paleoceanography 23 (1), PA1S03. https://doi.org/10.1029/2007PA001476. Brumley K., 2009. Tectonic geomorphology of the Chukchi Borderland: constraint for tectonic reconstruction models. A Thesis presented to the faculty of the University of Alaska Fairbanks in partial fulfillment of the requirements for the degree of Master of Science, 124 p. Brumley K., 2014. Geologic history of the Chukchi Borderland, Arctic Ocean. A dissertation submitted to the department of geology and environmental sciences and the committee on graduate studies of Stanford university in partial fulfillment of the requirements for the degree of Doctor of philosophy. Available from: http://purl.stanford.edu/hz857zk1405. Bruvoll V., Kristoffersen Y., Coakley B.J., Hopper J.R., 2010. Hemipelagic deposits on the Mendeleev and northwestern Alpha submarine Ridges in the Arctic Ocean: acoustic stratigraphy, depositional environment and an inter-ridge correlation calibrated by the ACEX results. Marine Geophysical Researches 31 (3), 149–171. https://doi.org/10.1007/s11001-010-9094-9. Bruvoll V., Kristoffersen Y., Coakley B.J., Hopper J.R., Planke S., Kandilarov A., 2012. The nature of the acoustic basement on Mendeleev and northwestern Alpha ridges, Arctic Ocean. Tectonophysics 514–517, 123–145. https://doi.org/10.1016/j.tecto.2011.10.015. Chian D., Jackson H.R., Hutchinson D.R., Shimeld J.W., Oakey G.N., Lebedeva-Ivanova N., Li Q. Saltus R.W., Mosher D.C., 2016. Distribution of crustal types in Canada Basin, Arctic Ocean. Tectonophysics 691 (Part A), 8–30. https://doi.org/10.1016/j.tecto.2016.01.038. Coakley B., Ilhan I., 2012. Developing geophysical constraints on the history of the Amerasian Basin of the Arctic Ocean. Offshore Technology Conference, OTC 23795. Cochran J.R., 2008. Seamount volcanism along the Gakkel Ridge, Arctic Ocean. Geophysical Journal International 174 (3), 1153–1173. https://doi.org/10.1111/j.1365-246X.2008.03860.x. Corfu F., Polteau S., Planke S., Faleide J.I., Svensen H., Zayoncheck A., Stolbov N., 2013. U–Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea large igneous province. Geological Magazine 150 (06), 1127–1135. https://doi.org/10.1017/S0016756813000162. Dick H.J., Lin J., Schouten H., 2003. An ultraslow-spreading class of ocean ridge. Nature 426 (6965), 405–412. https://doi.org/10.1038/nature02128. Dobretsov N.L., Vernikovsky V.A., Karyakin Yu.V., Korago E.A., Simonov V.A., 2013. Mesozoic-Cenozoic volcanism and geodynamic events in the Central and Eastern Arctic. Russian Geology and Geophysics 54 (8), 874–887. https://doi.org/10.1016/j.rgg.2013.07.008. Doré A.G., Lundin E.R., Gibbons A., Sømme T.O., Tørudbakken B.O., 2016. Transform margins of the Arctic: a synthesis and re-evaluation. In: M. Nemćok, S. Rybár, S.T. Sinha, S.A. Hermeston, L. Ledvényiové (Eds.), Transform margins: development, controls and petroleum systems. Geological Society, London, Special Publications, vol. 431, p. 63–94. https://doi.org/10.1144/SP431.8. Døssing A., Jackson H.R., Matzka J., Einarsson I., Rasmussen T.M., Olesen A.V., Brozena J.M., 2013. On the origin of the Amerasia Basin and the High Arctic Large Igneous Province – results of new aeromagnetic data. Earth and Planetary Science Letters 363, 219–230. https://doi.org/10.1016/j.epsl.2012.12.013. Dove D., Coakley B., Hopper J., Kristoffersen Y., Team H.G., 2010. Bathymetry, controlled source seismic and gravity observations of the Mendeleev ridge; implications for ridge structure, origin, and regional tectonics. Geophysical Journal International 183 (2), 481–502. https://doi.org/10.1111/j.1365-246X.2010.04746.x. Drachev S.S., 2016. Fold belts and sedimentary basins of the Eurasian Arctic. Arktos 2, 21. https://doi.org/10.1007/s41063-015-0014-8. Drachev S.S., Malyshev N.A., Nikishin A.M., 2010. Tectonic history and petroleum geology of the Russian Arctic Shelves: an overview. In: B.A. Vining, S.C. Pickering (Eds.), Petroleum Geology: From Mature Basins to New Frontiers – Proceedings of the 7th Petroleum Geology Conference. Geological Society, London, Petroleum Geology Conference series, vol. 7, p. 591–619. https://doi.org/10.1144/0070591. Drachev S., Saunders A.D., 2006. The Early Cretaceous Arctic Lip: its geodynamic setting and implications for Canada Basin opening. In: R.A. Scott, D.K. Thurston (Eds.), Proceedings of the Fourth International Conference on Arctic Margins ICAM IV. US Department of the Interior, p. 216–223. Ehlers B.-M., Jokat W., 2009. Subsidence and crustal roughness of ultra-slow spreading ridges in the northern North Atlantic and in the Arctic Ocean. Geophysical Journal International 177 (2), 451–462. https://doi.org/10.1111/j.1365-246X.2009.04078.x. Elkins L.J., Sims K.W.W., Prytulak J., Blichert-Toft J., Elliott T., Blusztajn J., Fretzdorff S., Reagan M., Haase K., Humphris S., Schilling J.-G., 2014. Melt generation beneath Arctic Ridges: Implications from U decay series disequilibria in the Mohns, Knipovich, and Gakkel Ridges. Geochimica et Cosmochimica Acta 127, 140–170. https://doi.org/10.1016/j.gca.2013.11.031. Evangelatos J., Mosher D.C., 2016. Seismic stratigraphy, structure and morphology of Makarov Basin and surrounding regions: tectonic implications. Marine Geology 374, 1–13. https://doi.org/10.1016/j.margeo.2016.01.013. Franke D., 2013. Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins. Marine and Petroleum Geology 43, 63–87. https://doi.org/10.1016/j.marpetgeo.2012.11.003. Gaina C., Medvedev S., Torsvik T.H., Koulakov I., Werner S.C., 2014. 4D Arctic: a glimpse into the structure and evolution of the Arctic in the light of new geophysical maps, plate tectonics and tomographic models. Surveys in Geophysics 35 (5), 1095–1122. https://doi.org/10.1007/s10712-013-9254-y. Gaina G., Nikishin A.M., Petrov E.I., 2015. Ultraslow spreading, ridge relocation and compressional events in the East Arctic region – A link to the Eurekan orogeny? Arktos 1, 16. https://doi.org/10.1007/s41063-015-0006-8. Gaina C., Werner S.C., Saltus R., Maus S., 2011. Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic. In: A.M. Spencer, A.F. Embry, D.L. Gautier, A.V. Stoupakova, K. Sørensen (Eds.), Arctic Petroleum Geology. Geological Society, London, Memoirs, vol. 35, p. 39–48. https://doi.org/10.1144/M35.3. Glebovsky V.Yu., Astafurova E.G., Chernykh A.A., Korneva M.A., Kaminsky V.D., Poselov V.A., 2013. Thickness of the Earth's crust in the deep Arctic Ocean: Results of a 3D gravity modeling. Russian Geology and Geophysics 54 (3), 247–262. https://doi.org/10.1016/j.rgg.2013.02.001. Glebovsky V.Yu., Kaminsky V.D., Minakov A.N., Merkur’ev S.A., Childers V.A., Brozena J.M., 2006. Formation of the Eurasia Basin in the Arctic Ocean as inferred from geohistorical analysis of the anomalous magnetic field. Geotectonics 40 (4), 263–281. https://doi.org/10.1134/S0016852106040029. Grantz A., Scott R.A., Drachev S.S., Moore T.E., Valin Z.C., 2011. Chapter 2. Sedimentary successions of the Arctic Region (58–64° to 90°N) that may be prospective for hydrocarbons. In: A.M. Spencer, A.F. Embry, D.L. Gautier, A.V. Stoupakova, K. Sørensen (Eds.), Arctic Petroleum Geology. Geological Society, London, Memoirs, vol. 35, p. 17–37. https://doi.org/10.1144/M35.2. Hegewald A., Jokat W., 2013. Tectonic and sedimentary structures in the northern Chukchi region, Arctic Ocean. Journal of Geophysical Research: Solid Earth 118 (7), 3285–3296. https://doi.org/10.1002/jgrb.50282. Helwig J., Kumar N., Emmet P., Dinkelman M.G., 2011. Regional seismic interpretation of crustal framework, Canadian Arctic passive margin, Beaufort Sea, with comments on petroleum potential. In: A.M. Spencer, A.F. Embry, D.L. Gautier, A.V. Stoupakova, K. Sørensen (Eds.), Arctic Petroleum Geology. Geological Society, London, Memoirs, vol. 35, p. 527–543. https://doi.org/10.1144/M35.35. Ikhsanov B., 2014. Late Mesozoic and Cenozoic Deformations of Sedimentary Basins of Chukchi Sea. PhD Thesis. Moscow State University, Geological Faculty, Moscow, 116 p. (in Russian) [Ихсанов Б.И. Позднемезозойские и кайнозойские деформации осадочных бассейнов акватории Чукотского моря: Дис. . канд. геол.-мин. наук. М: МГУ, геологический факультет, 2014. 116 с.]. Jakobsson M., Andreassen K., Bjarnadóttir L.R., Dove D., Dowdeswell J.A., England J.H., Funder S., Hogan K., Ingólfsson Ó., Jennings A., Larsen N.K., Kirchner N., Landvik J.Y., Mayer L., Mikkelsen N., Möller P., Niessen F., Nilsson J., O’Regan M., Polyak L., Nørgaard-Pedersen N., Stein R., 2014. Arctic Ocean glacial history. Quaternary Science Reviews 92, 40–67. https://doi.org/10.1016/j.quascirev.2013.07.033. Jakobsson M., Polyak L., Edwards M., Kleman J., Coakley B., 2008. Glacial geomorphology of the Central Arctic Ocean: the Chukchi Borderland and the Lomonosov Ridge. Earth Surface Processes and Landforms 33 (4), 526–545. https://doi.org/10.1002/esp.1667. Jokat W., 2003. Seismic investigations along the western sector of Alpha Ridge, Central Arctic Ocean. Geophysical Journal International 152 (1), 185–201. https://doi.org/10.1046/j.1365-246X.2003.01839.x. Jokat W., 2005. The sedimentary structure of the Lomonosov Ridge between 88°N and 80°N. Geophysical Journal International 163 (2), 698–726. https://doi.org/10.1111/j.1365-246X.2005.02786.x. Jokat W., Ickrath M., 2015. Structure of ridges and basins off East Siberia along 81°N, Arctic Ocean. Marine and Petro­leum Geology 64, 222–232. https://doi.org/10.1016/j.marpetgeo.2015.02.047. Jokat W., Ickrath M., O’Connor J., 2013. Seismic transect across the Lomonosov and Mendeleev Ridges: Constraints on the geological evolution of the Amerasia Basin, Arctic Ocean. Geophysical Research Letters 40 (19), 5047–5051. https://doi.org/10.1002/grl.50975. Khoroshilova M.A., Franke D., Kirillova T., Mouly B., Nikishin A.M., 2014. Dating and correlation of reference seismic horizons in the Laptev Sea basin. Moscow University Geology Bulletin 69 (5), 271–280. https://doi.org/10.3103/S0145875214050032. Kim B.I., Glezer Z.I., 2007. Sedimentary cover of the Lomonosov Ridge: stratigraphy, structure, deposition history, and ages of seismic facies units. Stratigraphy and Geological Correlation 15 (4), 401–420. https://doi.org/10.1134/S0869593807040053. Kos’ko M.K., Sobolev N.N., Korago E.A., Proskurnin V.F., Stolbov N.M., 2013. Geology of Novosibirskian Islands – a basis for interpretation of geophysical data on the Eastern Arctic shelf of Russia. Neftegazovaya Geologiya. Teoriya i Praktika 8 (2), Article 17 (in Russian) [Косько М.К., Соболев Н.Н., Кораго Е.А., Проскурнин В.Ф., Столбов Н.М. Геология Новосибирских островов – основа интерпретации геофизических данных по Восточно-Арк­тическому шельфу России // Нефтегазовая геология. Теория и практика. 2013. Т. 8. № 2. Статья 17]. Available from: http://www.ngtp.ru/rub/5/17_2013.pdf. Kos’ko M.K., Cecile M.P., Harrison J.C., Ganelin V.G., Khandoshko N.V., Lopatin B.G., 1993. Geology of Wrangel Island, Between Chukchi and East Siberian Seas, Northeastern Russia. Geological Survey Canada Bulletin, vol. 461, 101 p. Kos’ko M.K., Trufanov G.V., 2002. Middle Cretaceous to Eopleistocene Sequences on the New Siberian Islands: an approach to interpret offshore seismic. Marine and Petroleum Geology 19 (7), 901–919. https://doi.org/10.1016/S0264-8172(02)00057-0. Kumar N., Granath J.W., Emmet P.A., Helwig J.A., Dinkelman M.G., 2011. Stratigraphic and tectonic framework of the US Chukchi Shelf: exploration insights from a new regional deep-seismic reflection survey. In: A.M. Spencer, A.F. Embry, D.L. Gautier, A.V. Stoupakova, K. Sørensen (Eds.), Arctic Petroleum Geology. Geological Society, London, Memoirs, vol. 35, p. 501–508. https://doi.org/10.1144/M35.33. Kuzmichev A.B., 2009. Where does the South Anyui suture go in the New Siberian islands and Laptev Sea? Implications for the Amerasia basin origin. Tectonophysics 463 (1–4), 86–108. https://doi.org/10.1016/j.tecto.2008.09.017. Kuzmichev A.B., Aleksandrova G.N., Herman A.B., 2009. Aptian–Albian coaliferous sediments of Kotel’nyi Island (New Siberian Islands): new data on the section structure and ignimbrite volcanism. Stratigraphy and Geological Correlation 17 (5), 519–543. https://doi.org/10.1134/S0869593809050050. Kuzmichev A.B., Aleksandrova G.N., Herman A.B., Danukalova M.K., Simakova A.N., 2013. Paleogene–Neogene sediments of Bel’kov Island (New Siberian Islands): characteristics of sedimentary cover in the Eastern Laptev Shelf. Strati­graphy and Geological Correlation 21 (4), 421–444. https://doi.org/10.1134/S0869593813040059. Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Geodynamics & Tectonophysics; Том 8, № 1 (2017); 11-43 Геодинамика и тектонофизика; Том 8, № 1 (2017); 11-43 2078-502X сейсмический профиль Eurasia Basin North Chukchi Basin Laptev Sea Basin East Siberian Sea Basin Podvodnikov Basin Lomonosov Ridge Mendeleev Ridge Gakkel Ridge Makarov Basin rift sedimentary basin seismic line Евразийский бассейн Северо-Чукотский бассейн бассейн моря Лаптевых бассейн Восточно-Сибирского моря бассейн Подводников хребет Ломоносова хребет Менделеева хребет Гаккеля бассейн Макарова рифт осадочный бассейн info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2017 ftjgat https://doi.org/10.5800/GT-2017-8-1-0231 https://doi.org/10.1016/j.epsl.2008.07.036 https://doi.org/10.1029/2007PA001476 https://doi.org/10.1007/s11001-010-9094-9 https://doi.org/10.1016/j.tecto.2011.10.015 https://doi.org/10.1016/j.tecto.2016.0 2022-07-19T15:36:33Z In our study, we have developed a new tectonic scheme of the Arctic Ocean, which is based mainly on seismic profiles obtained in the Arctic-2011, Arctic-2012 and Arctic-2014 Projects implemented in Russia. Having interpreted many seismic profiles, we propose a new seismic stratigraphy of the Arctic Ocean. Our main conclusions are drawn from the interpretation of the seismic profiles and the analysis of the regional geological data. The results of our study show that rift systems within the Laptev, the East Siberian and the Chukchi Seas were formed not earlier than Aptian. The geological structure of the Eurasian, Podvodnikov, Toll and Makarov Basins is described in this paper. Having synthesized all the available data on the study area, we propose the following model of the geological history of the Arctic Ocean: 1. The Canada Basin formed till the Aptian (probably, during Hauterivian-Barremian time). 2. During the Aptian-Albian, large-scale tectonic and magmatic events took place, including plume magmatism in the area of the De Long Islands, Mendeleev Ridge and other regions. Continental rifting started after the completion of the Verkhoyansk-Chukotka orogenу, and rifting occurred on the shelf of the Laptev, East Siberian, North Chukchi and South Chukchi basins, and the Chukchi Plateau; simultaneously, continental rifting started in the Podvodnikov and Toll basins. 3. Perhaps the Late Cretaceous rifting continued in the Podvodnikov and Toll basins. 4. At the end of the Late Cretaceous and Paleocene, the Makarov basin was formed by rifting, although local spreading of oceanic crust during its formation cannot be excluded. 5. The Eurasian Basin started to open in the Early Eocene. We, of course, accept that our model of the geological history of the Arctic Ocean, being preliminary and debatable, may need further refining. In this paper, we have shown a link between the continental rift systems on the shelf and the formation history of the Arctic Ocean. На основе российских сейсмических профилей, полученных в ... Article in Journal/Newspaper Arctic Arctic Arctic Ocean canada basin Chukchi Chukotka De Long Islands East Siberian Sea laptev Laptev Sea Lomonosov Ridge makarov basin Geodynamics & Tectonophysics (E-Journal) Arctic Arctic Ocean Laptev Sea Canada East Siberian Sea ENVELOPE(166.000,166.000,74.000,74.000) Gakkel Ridge ENVELOPE(90.000,90.000,87.000,87.000) Makarov Basin ENVELOPE(170.000,170.000,87.000,87.000) Verkhoyansk ENVELOPE(133.400,133.400,67.544,67.544) Eurasia Basin ENVELOPE(80.000,80.000,87.000,87.000) De Long Islands ENVELOPE(153.000,153.000,76.500,76.500) Long Islands ENVELOPE(-93.035,-93.035,56.912,56.912) Podvodnikov Basin ENVELOPE(168.000,168.000,80.500,80.500) Geodynamics & Tectonophysics 8 1 11 43