T-t Evolution of the Early Proterozoic Rocks in the Northern Ladoga Region from the Data on U-Pb, Rb-Sr and Sm-Nd Systems in Minerals

This paper presents the results of a study of isotopic systems in minerals and rocks in southern margin of the epi-Archean Karelian craton in the zone of its junction with the Svecofennian mobile belt. U-Pb, Sm-Nd and Rb-Sr mineral ages of metamorphic rocks allowed reconstructing a T-t trend during...

Full description

Bibliographic Details
Main Authors: Sh. K. Baltybaev, V. M. Savatenkov, M. E. Petrakova, Ш. К. Балтыбаев, В. М. Саватенков, М. Е. Петракова
Other Authors: This work was supported by the Russian Science Foundation grant 23-27-00106, Исследование выполнено за счет гранта Российского научного фонда (проект № 23-27-00106)
Format: Article in Journal/Newspaper
Language:Russian
Published: Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch 2024
Subjects:
Online Access:https://www.gt-crust.ru/jour/article/view/1848
https://doi.org/10.5800/GT-2024-15-3-0759
id ftjgat:oai:oai.gtcrust.elpub.ru:article/1848
record_format openpolar
institution Open Polar
collection Geodynamics & Tectonophysics
op_collection_id ftjgat
language Russian
topic история остывания
metamorphic rocks
monazite
amphibole
biotite
titanite
U-Pb
Sm-Nd
Rb-Sr
Northern Ladoga region
cooling history
метаморфические породы
монацит
амфибол
биотит
титанит
Северное Приладожье
spellingShingle история остывания
metamorphic rocks
monazite
amphibole
biotite
titanite
U-Pb
Sm-Nd
Rb-Sr
Northern Ladoga region
cooling history
метаморфические породы
монацит
амфибол
биотит
титанит
Северное Приладожье
Sh. K. Baltybaev
V. M. Savatenkov
M. E. Petrakova
Ш. К. Балтыбаев
В. М. Саватенков
М. Е. Петракова
T-t Evolution of the Early Proterozoic Rocks in the Northern Ladoga Region from the Data on U-Pb, Rb-Sr and Sm-Nd Systems in Minerals
topic_facet история остывания
metamorphic rocks
monazite
amphibole
biotite
titanite
U-Pb
Sm-Nd
Rb-Sr
Northern Ladoga region
cooling history
метаморфические породы
монацит
амфибол
биотит
титанит
Северное Приладожье
description This paper presents the results of a study of isotopic systems in minerals and rocks in southern margin of the epi-Archean Karelian craton in the zone of its junction with the Svecofennian mobile belt. U-Pb, Sm-Nd and Rb-Sr mineral ages of metamorphic rocks allowed reconstructing a T-t trend during ~1.88–1.61 Ga, which reflects a wide-ranging cooling history of metamorphic rocks from the peak values of about 650–700 °C at 1.88–1.79 Ga (U-Pb age of monazites and apparent oldest Sm-Nd age of amphiboles) to 300–400 °C at 1.61 Ga (model Rb-Sr age of biotites) in zones of low- and medium-temperature metamorphism. The specificity of removal of deep-seated rocks to the present-day erosion surface and the reconstructed T-t trend comply with the development of thrust-nappe structures during the exhumation of the Svecofennids. It is also assumed that differential vertical block movements played a significant role during the post-orogenic extensional collapse and neorifting. Приводятся результаты изучения изотопных систем в минералах и породах южной окраины эпиархейского Карельского кратона в зоне сочленения с породами Свекофеннского подвижного пояса. Оценки возраста минералов метаморфических пород с использованием U-Pb, Sm-Nd и Rb-Sr изотопных систем позволили построить T-t тренд от ~1.88 до 1.61 млрд лет назад, который отражает историю остывания широкого спектра метаморфических пород от пиковых значений около 650–700 °С 1.88–1.79 млрд лет назад (U-Pb возраст монацитов и наиболее древний кажущийся Sm-Nd возраст амфиболов) до 300–400 °C 1.61 млрд лет назад (модельный Rb-Sr возраст биотитов) в зонах низко- и среднетемпературного метаморфизма. Cпецифика выведения глубинных пород к современной эрозионной поверхности и полученный T-t тренд увязываются с развитием покровно-надвиговых структур при эксгумации свекофеннид. Предполагается также существенная роль дифференциальных вертикально-блоковых перемещений во время посторогенного коллапса растяжения и позднейшего рифтогенеза.
author2 This work was supported by the Russian Science Foundation grant 23-27-00106
Исследование выполнено за счет гранта Российского научного фонда (проект № 23-27-00106)
format Article in Journal/Newspaper
author Sh. K. Baltybaev
V. M. Savatenkov
M. E. Petrakova
Ш. К. Балтыбаев
В. М. Саватенков
М. Е. Петракова
author_facet Sh. K. Baltybaev
V. M. Savatenkov
M. E. Petrakova
Ш. К. Балтыбаев
В. М. Саватенков
М. Е. Петракова
author_sort Sh. K. Baltybaev
title T-t Evolution of the Early Proterozoic Rocks in the Northern Ladoga Region from the Data on U-Pb, Rb-Sr and Sm-Nd Systems in Minerals
title_short T-t Evolution of the Early Proterozoic Rocks in the Northern Ladoga Region from the Data on U-Pb, Rb-Sr and Sm-Nd Systems in Minerals
title_full T-t Evolution of the Early Proterozoic Rocks in the Northern Ladoga Region from the Data on U-Pb, Rb-Sr and Sm-Nd Systems in Minerals
title_fullStr T-t Evolution of the Early Proterozoic Rocks in the Northern Ladoga Region from the Data on U-Pb, Rb-Sr and Sm-Nd Systems in Minerals
title_full_unstemmed T-t Evolution of the Early Proterozoic Rocks in the Northern Ladoga Region from the Data on U-Pb, Rb-Sr and Sm-Nd Systems in Minerals
title_sort t-t evolution of the early proterozoic rocks in the northern ladoga region from the data on u-pb, rb-sr and sm-nd systems in minerals
publisher Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch
publishDate 2024
url https://www.gt-crust.ru/jour/article/view/1848
https://doi.org/10.5800/GT-2024-15-3-0759
genre Arctic
karelian
genre_facet Arctic
karelian
op_source Geodynamics & Tectonophysics; Том 15, № 3 (2024); 0759
Геодинамика и тектонофизика; Том 15, № 3 (2024); 0759
2078-502X
op_relation https://www.gt-crust.ru/jour/article/view/1848/820
Amelin Yu.V., Larin A.M., Tucker R.D., 1997. Chronology of Multiphase Emplacement of the Salmi Rapakivi Granite-Anorthosite Complex, Baltic Shield: Implications for Magmatic Evolution. Contribution to Mineralogy and Petrology 127, 353–368. https://doi.org/10.1007/s004100050285.
Andersson U.B., 1997. The Late Svecofennian, High-Grade Contact and Regional Metamorphism in Southwestern Bergslagen (Central Southern Sweden). Geological Survey of Sweden Final Report 970519, 36 p. https://doi.org/10.13140/2.1.5088.5920.
Baltybaev Sh.K., 2013. Svecofennian Orogen of the Fennoscandian Shield: Compositional and Isotopic Zoning and Its Tectonic Interpretation. Geotectonics 47, 452–464. https://doi.org/10.1134/S0016852113060022.
Балтыбаев Ш.К., Глебовицкий В.А., Козырева И.В., Конопелько Д.Л., Левченков О.А., Седова И.С., Шульдинер В.И. Геология и петрология свекофеннид Приладожья. СПб.: Изд-во СПбГУ, 2000. 200 с.
Baltybaev Sh.K., Glebovitskii V.A., Kozyreva I.V., Shul’diner V.I., 1996. The Meyeri Thrust: The Main Element of the Suture at the Boundary between the Karelian Craton and the Svecofennian Belt in the Ladoga Region of the Baltic Shield. Doklady Earth Sciences 348 (4), 581–584.
Baltybaev Sh.K., Levchenkov O.A., Berezhnaya N.G., Levskii L.K., Makeev A.F., Yakovleva S.Z., 2004. Age and Duration of Svecofennian Plutono-Metamorphic Activity in the Ladoga Area, Southeastern Baltic Shield. Petrology 12 (4), 330–47.
Baltybaev Sh.K., Levchenkov O.A., Glebovitskii V.A., Rizvanova N.G., Fedoseenko A.M., Larionov A.N., Makeev A.F., 2009a. U-Pb Geochronology of Migmatite Leucosomes Based on Zircon SIMs Measurements and Correlation with TIMS-ID Data on Monazite. Doklady Earth Sciences 427, 943–946. https://doi.org/10.1134/S1028334X09060129.
Балтыбаев Ш.К., Левченков О.А., Левский Л.К. Свекофеннский пояс Фенноскандии: пространственно-временная корреляция раннепротерозойских эндогенных процессов. СПб.: Наука, 2009. 328 с.
Baltybaev Sh.K., Rizvanova N.G., Kuznetsov A.B., Petrakova M.E., Vivdich E.S., 2023. Late Orogenic Granitoids of the Tervu Agmatitic Zone in the Southeastern Part of the Svecofennian Belt (Northern Ladoga Area, Russia). Doklady Earth Sciences 511, 685–691. https://doi.org/10.1134/S1028334X23600561.
Baltybaev Sh.K., Vivdich E.S., 2021. Evolution of the Meyeri Thrust Zone of the Northern Ladoga Region (Republic of Karelia, Northwest Russia): PT Conditions for the Formation of Mineral Parageneses and Geodynamic Reconstructions. Geotectonics 55, 502–515. https://doi.org/10.1134/S0016852121040038.
Bibikova E.V., Bogdanova S.V., Glebovitsky V.A., Claesson S., Skiold T., 2004. Evolution of the Belomorian Belt: Nordsim U-Pb Zircon Dating of the Chupa Paragneisses, Magmatism, and Metamorphic Stages. Petrology 12 (3), 195–210.
Bibikova E.V., Slabunov A.I., Bogdanova S.V., Skiöld T., Stepanov V.S., Borisova E.Yu., 1999. Early Magmatism of the Belomorian Mobile Belt, Baltic Shield: Lateral Zoning and Isotopic Age. Petrology 7 (2), 123–146.
Bostock H.H., Loveridge W.D., 1988. Geochronology of the Taltson Magmatic Zone and Its Eastern Cratonic Margin, District of Mackenzie. Geological Survey of Canada 88 (2), 59–65. https://doi.org/10.4095/126603.
Буртман В.С., Колодяжный С.Ю. Системы разломов в верхней коре Фенноскандинавского щита Восточно-Европейской платформы // Геодинамика и тектонофизика. 2020. Т. 11. № 4. С. 756–769. https://doi.org/10.5800/GT-2020-11-4-0505.
Cliff R.A., 1985. Isotopic Dating in Metamorphic Belts. Journal of Geological Society of London 142 (1), 97–110. https://doi.org/10.1144/gsjgs.142.1.0097.
Copeland P., Parrish R.R., Harrison T.M., 1988. Identification of Inherited Radiogenic Pb in Monazite and Implications for U-Pb Systematics. Nature 333, 760–763. https://doi.org/10.1038/333760a0.
Dodson M.H., 1973. Closure Temperature in Cooling Geochronological and Petrological Systems. Contributions to Mineralogy and Petrology 40, 259–274. https://doi.org/10.1007/BF00373790.
Frisch T., Hunt P.A., 1988. U-Pb Zircon and Monazite Ages from the Precambrian Shield of Ellesmere and Devon Islands, Arctic Archipelago. Geological Survey of Canada 88 (2), 117–125. https://doi.org/10.4095/126609.
Gaàl G., Gorbatschev R., 1987. An Outline of the Precambrian Evolution of the Baltic Shield. Precambrian Research 35, 15–25. https://doi.org/10.1016/0301-9268(87)90044-1.
Gorbunov I.A., Balagansky V.V., 2022. Spiral-Shaped Fabrics in Metamorphic Rocks: A New Example of Rotation during Progressive Deformation. Journal of Structural Geology 159, 104590. https://doi.org/10.1016/j.jsg.2022.104590.
Harrison T.M., 1982. Diffusion of 40Ar in Hornblende. Contributions to Mineralogy and Petrology 78, 324–331. https://doi.org/10.1007/BF00398927.
Heaman L.M., Parrish R., 1991. U-Pb Geochronology of Accessory Minerals. In: L. Heaman, J.N. Ludden (Eds), Applications of Radiogenic Isotopes Systems to Problems in Geology. Short Course Handbook. Vol. 19. Mineralogical Association of Canada, p. 59–102.
Heinonen A.P., Rämö O.T., Mänttäri I., Andersen T., Larjamo K., 2017. Zircon as a Proxy for the Magmatic Evolution of Proterozoic Ferroan Granites; the Wiborg Rapakivi Granite Batholith, SE Finland. Journal of Petrology 58 (12), 2493–2517. https://doi.org/10.1093/petrology/egy014.
Högdahl K., Andersson U.B., Eklund O. (Eds), 2004. The Transcandinavian Igneous Belt (Tib) in Sweden: A Review of Its Character and Evolution. Geological Survey of Finland Special Paper 37, Espoo, 123 p.
Jenkin G.R.T., Ellam R.M., Rogers G., Stuart F.M., 2001. An Investigation of Closure Temperature of the Biotite Rb-Sr System: The Important of Cation Exchange. Geochimica et Cosmochimica Acta 65 (7), 1141–1160. https://doi.org/10.1016/S0016-7037(00)00560-3.
Kingsbury J.A., Miller C.F., Wooden J.L., Harrison T.M., 1993. Monazite Paragenesis and U-Pb Systematics in Rocks of the Eastern Mojave Desert, California, U.S.A.: Implications for Thermochronometry. Chemical Geology 110 (1–3), 147–167. https://doi.org/10.1016/0009-2541(93)90251-D.
Kretz R., 1983. Symbols for Rock−Forming Minerals. American Mineralogist 68 (1–2), 277–279.
Krogh T.E., 1973. A Low-Contamination Method for Hydrothermal Decomposition of Zircon and Extraction U and Pb for Isotopic Age Determinations. Geochimica et Cosmochimica Acta 37 (3), 485–494. https://doi.org/10.1016/0016-7037(73)90213-5.
Ludwig K.R., 1991. PbDat 1.21 for MS-DOS: A Computer Program for IBM-PC Compatibles for Processing Raw Pb-U-Th Isotope Data. Version 1.07. U.S. Geological Survey Open File Report, 35 p.
Ludwig K.R., 2001. User's Manual for ISOPLOT/EX, Version 2.49. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 1а, 55 p.
Mattinson J.M., 1982. U-Pb "Blocking Temperatures" and Pb Loss Characteristics in Young Zircon, Sphene and Apatite. In: Abstracts with Programs of the 95th GSA Annual Meeting (October 18–21, 1982, New Orleans, USA). Vol. 14. GSA, 08946.
Mezger K., Essene E.J., Halliday A.N., 1992. Closure Temperature of the Sm-Nd System in Metamorphic Garnets. Earth and Planetary Science Letters 113, 397–409. https://doi.org/10.1016/0012-821X(92)90141-H.
Mikova J., Denkova P., 2007. Modified Chromatographic Separation Scheme for SR and ND Isotope Analysis in Geological Silicate Samples. Journal of Geosciences 52 (3–4), 221–226. https://doi.org/10.3190/jgeosci.015.
Morozov Yu.A., Matveev M.A., Smulskaya A.I., Kulakovsky A.L., 2023. Post-Tectogenic Events and Exhumation Processes in the Svekokarelids of the Ladoga Region. Doklady Earth Sciences 511, 139–148. https://doi.org/10.1134/S1028334X23600846.
Morozov Yu.A., Yudin D.S., Travin A.V., Matveev M.A., Kulakovskiy A.L., Smulskaya A.I., 2020. The First Discovery of Pseudotachylytes in the Paleoproterozoic Ladoga Zonal Metamorphosed Complex of Fennoscandia and Their 40Ar/39Ar Dating. Doklady Earth Sciences 493, 485–489. https://doi.org/10.1134/S1028334X20070119.
Neymark L.A., Amelin Yu.V., Larin A.M., 1994. Pb-Nd-Sr Isotopic and Geochemical Constraints on the Origin of the 1.54–1.56 Ga Salmi Rapakivi Granite-Anorthosite Batholith (Karelia, Russia). Mineralogy and Petrology 50, 173–193.
Overstreet W.C., 1967. The Geologic Occurrence of Monazite. Geological Survey Professional Paper 530, 327 p.
Parrish R.R., 1990. U-Pb Dating of Monazite and Its Application to Geological Problems. Canadian Journal of Earth Sciences 27 (11), 1431–1450. https://doi.org/10.1139/e90-152.
Полянский О.П., Балтыбаев Ш.К., Бабичев А.В. Комбинированная модель диапирового и коллизионного механизма формирования гранит-мигматит-гнейсовых куполов Cвекофеннского пояса в палеопротерозое // Геодинамика и тектонофизика. 2023. Т. 14. № 4. 0715. https://doi.org/10.5800/GT-2023-14-4-0715.
Rämö O.T., Turkki V., Mänttäri I., Heinonen A., Larjamo K., Lahaye Y., 2014. Age and Isotopic Fingerprints of Some Plutonic Rocks in the Wiborg Rapakivi Granite Batholith with Special Reference to the Dark Wiborgite of the Ristisaari Island. Bulletin of the Geological Society of Finland 86 (2), 71–91. https://doi.org/10.17741/bgsf/86.2.002.
Ross G.M., Parrish R.R., Dudás F.Ö., 1991. Provenance of the Bonner Formation (Belt Supergroup), Montana: Insights from U-Pb and Sm-Nd Analyses of Detrital Minerals. Geology 19 (4), 340–343. https://doi.org/10.1130/0091-7613(1991)019%3C0340:POTBFB%3E2.3.CO;2.
Savatenkov V.M., Morozova I.M., Levsky L.K., 2004. Behavior of the Sm-Nd, Rb-Sr, K-Ar, and U-Pb Isotopic Systems during Alkaline Metasomatism: Fenites in the Outer-Contact Zone of an Ultramafic-Alkaline Intrusion. Geochemistry International 42 (10), 899–920.
Sawka W., Banfield J.F., Chappell B.W., 1986. A Weathering-Related Origin of Widespread Monazite in S-Type Granites. Geochimica et Cosmochimica Acta 50 (1), 171–175. https://doi.org/10.1016/0016-7037(86)90062-1.
Shuldiner V.I., Levchenkov O.A., Yakovleva S.Z., Makeev A.F., Komarov A.N., Konopel’ko D.L., Baltybaev Sh.K., Kozyreva I.V., 2000. The Late Karelian in the Stratigraphic Scale of Russia: Determination of Its Lower Boundary and Regional Units in the Stratotype Area. Stratigraphy and Geological Correlation 8 (6), 544–557.
Smith H.A., Barreiro B., 1990. Monazite U-Pb Dating of Staurolite Grade Metamorphism in Pelitic Schists. Contributions to Mineralogy and Petrology 105, 602–615. https://doi.org/10.1007/bf00302498.
Smith H.A., Giletti B.J., 1997. Lead Diffusion in Monazite. Geochimica et Cosmochimica Acta 61 (5), 1047–1055. https://doi.org/10.1016/S0016-7037(96)00396-1.
Spear F.S., Parrish R.R., 1996. Petrology and Cooling Rates of the Valhalla Complex, British Columbia, Canada. Journal of Petrology 37 (4), 733–765. https://doi.org/10.1093/petrology/37.4.733.
Stacey J.S., Kramers J.D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters, 26 (2), 207–221. https://doi.org/10.1016/0012-821X(75)90088-6.
Steiger R.H., Jäger E., 1977. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology. Earth and Planetary Science Letters, 36 (3), 359–362. https://doi.org/10.1016/0012-821X(77)90060-7.
op_rights Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_doi https://doi.org/10.5800/GT-2024-15-3-075910.1007/s00410005028510.13140/2.1.5088.592010.1134/S001685211306002210.1134/S1028334X0906012910.1134/S1028334X2360056110.1134/S001685212104003810.4095/12660310.5800/GT-2020-11-4-050510.1144/gsjgs.142.1.009710.1038/
_version_ 1810294163531366400
spelling ftjgat:oai:oai.gtcrust.elpub.ru:article/1848 2024-09-15T17:52:06+00:00 T-t Evolution of the Early Proterozoic Rocks in the Northern Ladoga Region from the Data on U-Pb, Rb-Sr and Sm-Nd Systems in Minerals T-t ЭВОЛЮЦИЯ РАННЕПРОТЕРОЗОЙСКИХ ПОРОД СЕВЕРНОГО ПРИЛАДОЖЬЯ ПО ДАННЫМ ИЗУЧЕНИЯ U-Pb, Rb-Sr И Sm-Nd СИСТЕМ В МИНЕРАЛАХ Sh. K. Baltybaev V. M. Savatenkov M. E. Petrakova Ш. К. Балтыбаев В. М. Саватенков М. Е. Петракова This work was supported by the Russian Science Foundation grant 23-27-00106 Исследование выполнено за счет гранта Российского научного фонда (проект № 23-27-00106) 2024-06-18 application/pdf https://www.gt-crust.ru/jour/article/view/1848 https://doi.org/10.5800/GT-2024-15-3-0759 rus rus Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch https://www.gt-crust.ru/jour/article/view/1848/820 Amelin Yu.V., Larin A.M., Tucker R.D., 1997. Chronology of Multiphase Emplacement of the Salmi Rapakivi Granite-Anorthosite Complex, Baltic Shield: Implications for Magmatic Evolution. Contribution to Mineralogy and Petrology 127, 353–368. https://doi.org/10.1007/s004100050285. Andersson U.B., 1997. The Late Svecofennian, High-Grade Contact and Regional Metamorphism in Southwestern Bergslagen (Central Southern Sweden). Geological Survey of Sweden Final Report 970519, 36 p. https://doi.org/10.13140/2.1.5088.5920. Baltybaev Sh.K., 2013. Svecofennian Orogen of the Fennoscandian Shield: Compositional and Isotopic Zoning and Its Tectonic Interpretation. Geotectonics 47, 452–464. https://doi.org/10.1134/S0016852113060022. Балтыбаев Ш.К., Глебовицкий В.А., Козырева И.В., Конопелько Д.Л., Левченков О.А., Седова И.С., Шульдинер В.И. Геология и петрология свекофеннид Приладожья. СПб.: Изд-во СПбГУ, 2000. 200 с. Baltybaev Sh.K., Glebovitskii V.A., Kozyreva I.V., Shul’diner V.I., 1996. The Meyeri Thrust: The Main Element of the Suture at the Boundary between the Karelian Craton and the Svecofennian Belt in the Ladoga Region of the Baltic Shield. Doklady Earth Sciences 348 (4), 581–584. Baltybaev Sh.K., Levchenkov O.A., Berezhnaya N.G., Levskii L.K., Makeev A.F., Yakovleva S.Z., 2004. Age and Duration of Svecofennian Plutono-Metamorphic Activity in the Ladoga Area, Southeastern Baltic Shield. Petrology 12 (4), 330–47. Baltybaev Sh.K., Levchenkov O.A., Glebovitskii V.A., Rizvanova N.G., Fedoseenko A.M., Larionov A.N., Makeev A.F., 2009a. U-Pb Geochronology of Migmatite Leucosomes Based on Zircon SIMs Measurements and Correlation with TIMS-ID Data on Monazite. Doklady Earth Sciences 427, 943–946. https://doi.org/10.1134/S1028334X09060129. Балтыбаев Ш.К., Левченков О.А., Левский Л.К. Свекофеннский пояс Фенноскандии: пространственно-временная корреляция раннепротерозойских эндогенных процессов. СПб.: Наука, 2009. 328 с. Baltybaev Sh.K., Rizvanova N.G., Kuznetsov A.B., Petrakova M.E., Vivdich E.S., 2023. Late Orogenic Granitoids of the Tervu Agmatitic Zone in the Southeastern Part of the Svecofennian Belt (Northern Ladoga Area, Russia). Doklady Earth Sciences 511, 685–691. https://doi.org/10.1134/S1028334X23600561. Baltybaev Sh.K., Vivdich E.S., 2021. Evolution of the Meyeri Thrust Zone of the Northern Ladoga Region (Republic of Karelia, Northwest Russia): PT Conditions for the Formation of Mineral Parageneses and Geodynamic Reconstructions. Geotectonics 55, 502–515. https://doi.org/10.1134/S0016852121040038. Bibikova E.V., Bogdanova S.V., Glebovitsky V.A., Claesson S., Skiold T., 2004. Evolution of the Belomorian Belt: Nordsim U-Pb Zircon Dating of the Chupa Paragneisses, Magmatism, and Metamorphic Stages. Petrology 12 (3), 195–210. Bibikova E.V., Slabunov A.I., Bogdanova S.V., Skiöld T., Stepanov V.S., Borisova E.Yu., 1999. Early Magmatism of the Belomorian Mobile Belt, Baltic Shield: Lateral Zoning and Isotopic Age. Petrology 7 (2), 123–146. Bostock H.H., Loveridge W.D., 1988. Geochronology of the Taltson Magmatic Zone and Its Eastern Cratonic Margin, District of Mackenzie. Geological Survey of Canada 88 (2), 59–65. https://doi.org/10.4095/126603. Буртман В.С., Колодяжный С.Ю. Системы разломов в верхней коре Фенноскандинавского щита Восточно-Европейской платформы // Геодинамика и тектонофизика. 2020. Т. 11. № 4. С. 756–769. https://doi.org/10.5800/GT-2020-11-4-0505. Cliff R.A., 1985. Isotopic Dating in Metamorphic Belts. Journal of Geological Society of London 142 (1), 97–110. https://doi.org/10.1144/gsjgs.142.1.0097. Copeland P., Parrish R.R., Harrison T.M., 1988. Identification of Inherited Radiogenic Pb in Monazite and Implications for U-Pb Systematics. Nature 333, 760–763. https://doi.org/10.1038/333760a0. Dodson M.H., 1973. Closure Temperature in Cooling Geochronological and Petrological Systems. Contributions to Mineralogy and Petrology 40, 259–274. https://doi.org/10.1007/BF00373790. Frisch T., Hunt P.A., 1988. U-Pb Zircon and Monazite Ages from the Precambrian Shield of Ellesmere and Devon Islands, Arctic Archipelago. Geological Survey of Canada 88 (2), 117–125. https://doi.org/10.4095/126609. Gaàl G., Gorbatschev R., 1987. An Outline of the Precambrian Evolution of the Baltic Shield. Precambrian Research 35, 15–25. https://doi.org/10.1016/0301-9268(87)90044-1. Gorbunov I.A., Balagansky V.V., 2022. Spiral-Shaped Fabrics in Metamorphic Rocks: A New Example of Rotation during Progressive Deformation. Journal of Structural Geology 159, 104590. https://doi.org/10.1016/j.jsg.2022.104590. Harrison T.M., 1982. Diffusion of 40Ar in Hornblende. Contributions to Mineralogy and Petrology 78, 324–331. https://doi.org/10.1007/BF00398927. Heaman L.M., Parrish R., 1991. U-Pb Geochronology of Accessory Minerals. In: L. Heaman, J.N. Ludden (Eds), Applications of Radiogenic Isotopes Systems to Problems in Geology. Short Course Handbook. Vol. 19. Mineralogical Association of Canada, p. 59–102. Heinonen A.P., Rämö O.T., Mänttäri I., Andersen T., Larjamo K., 2017. Zircon as a Proxy for the Magmatic Evolution of Proterozoic Ferroan Granites; the Wiborg Rapakivi Granite Batholith, SE Finland. Journal of Petrology 58 (12), 2493–2517. https://doi.org/10.1093/petrology/egy014. Högdahl K., Andersson U.B., Eklund O. (Eds), 2004. The Transcandinavian Igneous Belt (Tib) in Sweden: A Review of Its Character and Evolution. Geological Survey of Finland Special Paper 37, Espoo, 123 p. Jenkin G.R.T., Ellam R.M., Rogers G., Stuart F.M., 2001. An Investigation of Closure Temperature of the Biotite Rb-Sr System: The Important of Cation Exchange. Geochimica et Cosmochimica Acta 65 (7), 1141–1160. https://doi.org/10.1016/S0016-7037(00)00560-3. Kingsbury J.A., Miller C.F., Wooden J.L., Harrison T.M., 1993. Monazite Paragenesis and U-Pb Systematics in Rocks of the Eastern Mojave Desert, California, U.S.A.: Implications for Thermochronometry. Chemical Geology 110 (1–3), 147–167. https://doi.org/10.1016/0009-2541(93)90251-D. Kretz R., 1983. Symbols for Rock−Forming Minerals. American Mineralogist 68 (1–2), 277–279. Krogh T.E., 1973. A Low-Contamination Method for Hydrothermal Decomposition of Zircon and Extraction U and Pb for Isotopic Age Determinations. Geochimica et Cosmochimica Acta 37 (3), 485–494. https://doi.org/10.1016/0016-7037(73)90213-5. Ludwig K.R., 1991. PbDat 1.21 for MS-DOS: A Computer Program for IBM-PC Compatibles for Processing Raw Pb-U-Th Isotope Data. Version 1.07. U.S. Geological Survey Open File Report, 35 p. Ludwig K.R., 2001. User's Manual for ISOPLOT/EX, Version 2.49. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 1а, 55 p. Mattinson J.M., 1982. U-Pb "Blocking Temperatures" and Pb Loss Characteristics in Young Zircon, Sphene and Apatite. In: Abstracts with Programs of the 95th GSA Annual Meeting (October 18–21, 1982, New Orleans, USA). Vol. 14. GSA, 08946. Mezger K., Essene E.J., Halliday A.N., 1992. Closure Temperature of the Sm-Nd System in Metamorphic Garnets. Earth and Planetary Science Letters 113, 397–409. https://doi.org/10.1016/0012-821X(92)90141-H. Mikova J., Denkova P., 2007. Modified Chromatographic Separation Scheme for SR and ND Isotope Analysis in Geological Silicate Samples. Journal of Geosciences 52 (3–4), 221–226. https://doi.org/10.3190/jgeosci.015. Morozov Yu.A., Matveev M.A., Smulskaya A.I., Kulakovsky A.L., 2023. Post-Tectogenic Events and Exhumation Processes in the Svekokarelids of the Ladoga Region. Doklady Earth Sciences 511, 139–148. https://doi.org/10.1134/S1028334X23600846. Morozov Yu.A., Yudin D.S., Travin A.V., Matveev M.A., Kulakovskiy A.L., Smulskaya A.I., 2020. The First Discovery of Pseudotachylytes in the Paleoproterozoic Ladoga Zonal Metamorphosed Complex of Fennoscandia and Their 40Ar/39Ar Dating. Doklady Earth Sciences 493, 485–489. https://doi.org/10.1134/S1028334X20070119. Neymark L.A., Amelin Yu.V., Larin A.M., 1994. Pb-Nd-Sr Isotopic and Geochemical Constraints on the Origin of the 1.54–1.56 Ga Salmi Rapakivi Granite-Anorthosite Batholith (Karelia, Russia). Mineralogy and Petrology 50, 173–193. Overstreet W.C., 1967. The Geologic Occurrence of Monazite. Geological Survey Professional Paper 530, 327 p. Parrish R.R., 1990. U-Pb Dating of Monazite and Its Application to Geological Problems. Canadian Journal of Earth Sciences 27 (11), 1431–1450. https://doi.org/10.1139/e90-152. Полянский О.П., Балтыбаев Ш.К., Бабичев А.В. Комбинированная модель диапирового и коллизионного механизма формирования гранит-мигматит-гнейсовых куполов Cвекофеннского пояса в палеопротерозое // Геодинамика и тектонофизика. 2023. Т. 14. № 4. 0715. https://doi.org/10.5800/GT-2023-14-4-0715. Rämö O.T., Turkki V., Mänttäri I., Heinonen A., Larjamo K., Lahaye Y., 2014. Age and Isotopic Fingerprints of Some Plutonic Rocks in the Wiborg Rapakivi Granite Batholith with Special Reference to the Dark Wiborgite of the Ristisaari Island. Bulletin of the Geological Society of Finland 86 (2), 71–91. https://doi.org/10.17741/bgsf/86.2.002. Ross G.M., Parrish R.R., Dudás F.Ö., 1991. Provenance of the Bonner Formation (Belt Supergroup), Montana: Insights from U-Pb and Sm-Nd Analyses of Detrital Minerals. Geology 19 (4), 340–343. https://doi.org/10.1130/0091-7613(1991)019%3C0340:POTBFB%3E2.3.CO;2. Savatenkov V.M., Morozova I.M., Levsky L.K., 2004. Behavior of the Sm-Nd, Rb-Sr, K-Ar, and U-Pb Isotopic Systems during Alkaline Metasomatism: Fenites in the Outer-Contact Zone of an Ultramafic-Alkaline Intrusion. Geochemistry International 42 (10), 899–920. Sawka W., Banfield J.F., Chappell B.W., 1986. A Weathering-Related Origin of Widespread Monazite in S-Type Granites. Geochimica et Cosmochimica Acta 50 (1), 171–175. https://doi.org/10.1016/0016-7037(86)90062-1. Shuldiner V.I., Levchenkov O.A., Yakovleva S.Z., Makeev A.F., Komarov A.N., Konopel’ko D.L., Baltybaev Sh.K., Kozyreva I.V., 2000. The Late Karelian in the Stratigraphic Scale of Russia: Determination of Its Lower Boundary and Regional Units in the Stratotype Area. Stratigraphy and Geological Correlation 8 (6), 544–557. Smith H.A., Barreiro B., 1990. Monazite U-Pb Dating of Staurolite Grade Metamorphism in Pelitic Schists. Contributions to Mineralogy and Petrology 105, 602–615. https://doi.org/10.1007/bf00302498. Smith H.A., Giletti B.J., 1997. Lead Diffusion in Monazite. Geochimica et Cosmochimica Acta 61 (5), 1047–1055. https://doi.org/10.1016/S0016-7037(96)00396-1. Spear F.S., Parrish R.R., 1996. Petrology and Cooling Rates of the Valhalla Complex, British Columbia, Canada. Journal of Petrology 37 (4), 733–765. https://doi.org/10.1093/petrology/37.4.733. Stacey J.S., Kramers J.D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters, 26 (2), 207–221. https://doi.org/10.1016/0012-821X(75)90088-6. Steiger R.H., Jäger E., 1977. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology. Earth and Planetary Science Letters, 36 (3), 359–362. https://doi.org/10.1016/0012-821X(77)90060-7. Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Geodynamics & Tectonophysics; Том 15, № 3 (2024); 0759 Геодинамика и тектонофизика; Том 15, № 3 (2024); 0759 2078-502X история остывания metamorphic rocks monazite amphibole biotite titanite U-Pb Sm-Nd Rb-Sr Northern Ladoga region cooling history метаморфические породы монацит амфибол биотит титанит Северное Приладожье info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2024 ftjgat https://doi.org/10.5800/GT-2024-15-3-075910.1007/s00410005028510.13140/2.1.5088.592010.1134/S001685211306002210.1134/S1028334X0906012910.1134/S1028334X2360056110.1134/S001685212104003810.4095/12660310.5800/GT-2020-11-4-050510.1144/gsjgs.142.1.009710.1038/ 2024-06-24T23:46:30Z This paper presents the results of a study of isotopic systems in minerals and rocks in southern margin of the epi-Archean Karelian craton in the zone of its junction with the Svecofennian mobile belt. U-Pb, Sm-Nd and Rb-Sr mineral ages of metamorphic rocks allowed reconstructing a T-t trend during ~1.88–1.61 Ga, which reflects a wide-ranging cooling history of metamorphic rocks from the peak values of about 650–700 °C at 1.88–1.79 Ga (U-Pb age of monazites and apparent oldest Sm-Nd age of amphiboles) to 300–400 °C at 1.61 Ga (model Rb-Sr age of biotites) in zones of low- and medium-temperature metamorphism. The specificity of removal of deep-seated rocks to the present-day erosion surface and the reconstructed T-t trend comply with the development of thrust-nappe structures during the exhumation of the Svecofennids. It is also assumed that differential vertical block movements played a significant role during the post-orogenic extensional collapse and neorifting. Приводятся результаты изучения изотопных систем в минералах и породах южной окраины эпиархейского Карельского кратона в зоне сочленения с породами Свекофеннского подвижного пояса. Оценки возраста минералов метаморфических пород с использованием U-Pb, Sm-Nd и Rb-Sr изотопных систем позволили построить T-t тренд от ~1.88 до 1.61 млрд лет назад, который отражает историю остывания широкого спектра метаморфических пород от пиковых значений около 650–700 °С 1.88–1.79 млрд лет назад (U-Pb возраст монацитов и наиболее древний кажущийся Sm-Nd возраст амфиболов) до 300–400 °C 1.61 млрд лет назад (модельный Rb-Sr возраст биотитов) в зонах низко- и среднетемпературного метаморфизма. Cпецифика выведения глубинных пород к современной эрозионной поверхности и полученный T-t тренд увязываются с развитием покровно-надвиговых структур при эксгумации свекофеннид. Предполагается также существенная роль дифференциальных вертикально-блоковых перемещений во время посторогенного коллапса растяжения и позднейшего рифтогенеза. Article in Journal/Newspaper Arctic karelian Geodynamics & Tectonophysics