EARTHQUAKE SWARMS AS EVIDENCE OF VOLCANO-TECTONIC PROCESSES OF THE SLOWEST SPREADING GAKKEL RIDGE IN THE ARCTIC

Based on the data from the Arctic regional seismic stations, the article presents the results of studying the swarm seismicity of the Gakkel Mid-Ocean Ridge, located in the Arctic Ocean. The active spreading processes of ultraslow ridges with spreading rates of less than 20 mm/yr, which include the...

Full description

Bibliographic Details
Published in:Oceanography
Main Authors: А. N. Morozov, N. V. Vaganova, Y. A. Mikhailova, Е. R. Morozova, I. V. Starkov, А. Н. Морозов, Н. В. Ваганова, Я. А. Михайлова, Е. Р. Морозова, И. В. Старков
Other Authors: The study was supported by the Russian Science Foundation, project 22-27-00190, "Can low-magnitude earthquake swarms of the slowest spreading Gakkel Ridge in the Arctic be considered as an indicator of present-day magmatism and dike intrusions?"., Исследования выполнены при финансовой поддержке РНФ, проект № 22-27-00190 «Рои низкомагнитудных землетрясений на ультрамедленном спрединговом хребте Гаккеля в Арктике – индикатор современного магматизма и внедрения даек?».
Format: Article in Journal/Newspaper
Language:Russian
Published: Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch 2024
Subjects:
Online Access:https://www.gt-crust.ru/jour/article/view/1789
https://doi.org/10.5800/GT-2024-15-1-0737
id ftjgat:oai:oai.gtcrust.elpub.ru:article/1789
record_format openpolar
institution Open Polar
collection Geodynamics & Tectonophysics
op_collection_id ftjgat
language Russian
topic вулканотектонические процессы
Gakkel Ridge
low-magnitude earthquakes
earthquake swarm
volcano-tectonic processes
хребет Гаккеля
низкомагнитудные землетрясения
рой землетрясений
spellingShingle вулканотектонические процессы
Gakkel Ridge
low-magnitude earthquakes
earthquake swarm
volcano-tectonic processes
хребет Гаккеля
низкомагнитудные землетрясения
рой землетрясений
А. N. Morozov
N. V. Vaganova
Y. A. Mikhailova
Е. R. Morozova
I. V. Starkov
А. Н. Морозов
Н. В. Ваганова
Я. А. Михайлова
Е. Р. Морозова
И. В. Старков
EARTHQUAKE SWARMS AS EVIDENCE OF VOLCANO-TECTONIC PROCESSES OF THE SLOWEST SPREADING GAKKEL RIDGE IN THE ARCTIC
topic_facet вулканотектонические процессы
Gakkel Ridge
low-magnitude earthquakes
earthquake swarm
volcano-tectonic processes
хребет Гаккеля
низкомагнитудные землетрясения
рой землетрясений
description Based on the data from the Arctic regional seismic stations, the article presents the results of studying the swarm seismicity of the Gakkel Mid-Ocean Ridge, located in the Arctic Ocean. The active spreading processes of ultraslow ridges with spreading rates of less than 20 mm/yr, which include the Gakkel Ridge, are still poorly understood as compared to the MOR in the Atlantic and Pacific oceans, with spreading rates of more than 25 mm/yr. In 2012–2022, there were identified eight swarms: one within the western volcanic segment of the ridge, others – in the eastern volcanic segment. No earthquake swarms were recorded in the central amagmatic segment of the ridge; the recording therein covers primarily single earthquakes and aftershock sequences. Spatially identified swarms are confied to some volcanic centers revealed earlier from the geological and geophysical data during complex expeditions. The ridge segment at coordinates ∼85…∼93° E is characterized by the most intense manifestations of volcanic processes. The spatial distribution of swarms may also indicate potential presence of volcanic structures that have not yet been identified from the geological, geophysical and geomorphological data. In the temporal domain, there can be preliminarily distinguished a 5-year swarm activation cycle, which, however, requires additional verification over a longer time interval. The swarm seismicity of the slowest spreading Gakkel Ridge cannot be described by a simple model of volcanism and magma intrusion into a symmetrical rift; it is rather a result of a complex interaction between diking and faulting with magma transport along the faults with potentially significant seismic activities. There can probably be suggested a regular combination of the processes of volcanic activation and seismotectonic destruction, which is especially pronounced in the locations of transverse faults. The results described in this article expand our understanding of the manifestation of volcano-tectonic processes occurring within the slowest ...
author2 The study was supported by the Russian Science Foundation, project 22-27-00190, "Can low-magnitude earthquake swarms of the slowest spreading Gakkel Ridge in the Arctic be considered as an indicator of present-day magmatism and dike intrusions?".
Исследования выполнены при финансовой поддержке РНФ, проект № 22-27-00190 «Рои низкомагнитудных землетрясений на ультрамедленном спрединговом хребте Гаккеля в Арктике – индикатор современного магматизма и внедрения даек?».
format Article in Journal/Newspaper
author А. N. Morozov
N. V. Vaganova
Y. A. Mikhailova
Е. R. Morozova
I. V. Starkov
А. Н. Морозов
Н. В. Ваганова
Я. А. Михайлова
Е. Р. Морозова
И. В. Старков
author_facet А. N. Morozov
N. V. Vaganova
Y. A. Mikhailova
Е. R. Morozova
I. V. Starkov
А. Н. Морозов
Н. В. Ваганова
Я. А. Михайлова
Е. Р. Морозова
И. В. Старков
author_sort А. N. Morozov
title EARTHQUAKE SWARMS AS EVIDENCE OF VOLCANO-TECTONIC PROCESSES OF THE SLOWEST SPREADING GAKKEL RIDGE IN THE ARCTIC
title_short EARTHQUAKE SWARMS AS EVIDENCE OF VOLCANO-TECTONIC PROCESSES OF THE SLOWEST SPREADING GAKKEL RIDGE IN THE ARCTIC
title_full EARTHQUAKE SWARMS AS EVIDENCE OF VOLCANO-TECTONIC PROCESSES OF THE SLOWEST SPREADING GAKKEL RIDGE IN THE ARCTIC
title_fullStr EARTHQUAKE SWARMS AS EVIDENCE OF VOLCANO-TECTONIC PROCESSES OF THE SLOWEST SPREADING GAKKEL RIDGE IN THE ARCTIC
title_full_unstemmed EARTHQUAKE SWARMS AS EVIDENCE OF VOLCANO-TECTONIC PROCESSES OF THE SLOWEST SPREADING GAKKEL RIDGE IN THE ARCTIC
title_sort earthquake swarms as evidence of volcano-tectonic processes of the slowest spreading gakkel ridge in the arctic
publisher Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch
publishDate 2024
url https://www.gt-crust.ru/jour/article/view/1789
https://doi.org/10.5800/GT-2024-15-1-0737
long_lat ENVELOPE(90.000,90.000,87.000,87.000)
geographic Arctic
Arctic Ocean
Gakkel Ridge
Pacific
geographic_facet Arctic
Arctic Ocean
Gakkel Ridge
Pacific
genre Arctic
Arctic
Arctic Ocean
Polar Science
Polar Science
Reports on Polar and Marine Research
genre_facet Arctic
Arctic
Arctic Ocean
Polar Science
Polar Science
Reports on Polar and Marine Research
op_source Geodynamics & Tectonophysics; Том 15, № 1 (2024); 0737
Геодинамика и тектонофизика; Том 15, № 1 (2024); 0737
2078-502X
op_relation https://www.gt-crust.ru/jour/article/view/1789/797
Agrawal R., Gehrke J., Gunopulos D., Raghavan P., 2005. Automatic Sub Space Clustering of High Dimensional Data. Data Mining Knowledge Discovery 11, 5–33. https://doi.org/10.1007/s10618-005-1396-1
Антоновская Г.Н., Конечная Я.В., Ваганова Н.В., Басакина И.М., Морозов А.Н., Шахова Е.В., Михайлова Я.А., Данилов К.Б. Вклад уникальной научной установки «Архангельская сейсмическая сеть» в изучение сейсмичности Российской Арктики // Геодинамика и тектонофизика. 2022. Т. 13. № 2. 0587. https://doi.org/10.5800/GT-2022-13-2-0587.
Аветисов Г.П. Сейсмоактивные зоны Арктики. СПб.: ВНИИ Океангеология, 1996. 186 с.
Bohnenstiehl D.R., Dziak R.P., 2008. Mid-Ocean Ridge Seismicity. In: J. Steele, S. Thorpe, K. Turekian (Eds), Encyclopedia of Ocean Sciences. First Online Update. Academic Press, London.
Bulletin of the International Seismological Centre Catalogue Search, 2022. Available from: http://www.isc.ac.uk/iscbulletin/search/ (Last Accessed May 06, 2023).
Cochran J.R., 2008. Seamount Volcanism along the Gakkel Ridge, Arctic Ocean. Geophysical Journal International 174 (3), 1153–1173. https://doi.org/10.1111/j.1365-246X.2008.03860.x.
Cochran J.R., Kurras G.J., Edwards M.H., Coakley B.J., 2003. The Gakkel Ridge: Bathymetry, Gravity Anomalies and Crustal Accretionat Extremely Slow Spreading Rates. Journal of Geophysical Research 108 (В2), 2116. https://doi.org/10.1029/2002JB001830.
Davis S.D., Frohlich C., 1991. Single-Link Cluster Analysis, Synthetic Earthquake Catalogues, and Aftershock Identification. Geophysical Journal International 104 (2), 289–306. https://doi.org/10.1111/j.1365-246X.1991.tb02512.x.
DeMets C., Gordon R.G., Argus D.F., 2010. Geologically Current Plate Motions. Geophysical Journal International 181 (1), 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x.
Dick H.J.B., Lin J., Schouten H., 2003. An Ultraslow-Spreading Class of Ocean Ridge. Nature 426, 405–412. https://doi.org/10.1038/nature02128.
Дулин С.К., Розенберг И.Н., Уманский В.И. Методы кластеризации в исследовании массивов геоданных // Системы и средства информатики (Доп. вып.). 2009. С. 86–113.
Edwards M.H., Kurras G.J., Tolstoy M., Bohnenstiehl D.R., Coakley B.J., Cochran J.R., 2001. Evidence of Recent Volcanic Activity on the Ultraslow-Spreading Gakkel Ridge. Nature 409, 808–812. https://doi.org/10.1038/35057258.
Engen Ø., Eldholm O., Bungum H., 2003. The Arctic Plate Boundary. Journal of Geophysical Research: Solid Earth 108 (B2), 2075. https://doi.org/10.1029/2002JB001809.
Fox C.G., Radford W.E., Dziak R.P., Lau T.-K.A., Matsumoto H., Schreiner A.E., 1995. Acoustic Detection of a Seafloor Spreading Episode on the Juan de Fuca Ridge Using Military Hydrophone Arrays. Geophysical Research Letters 22, 131–134. https://doi.org/10.1029/94GL02059.
Frohlich C., Davis S.D., 1990. Single-Link Cluster Analysis as a Method to Evaluate Spatial and Temporal Properties of Earthquake Catalogues. Geophysical Journal International 100 (1), 19–32.
Fujita K., Cook D.B., Hasegawa H., Forsyth D., Wetmiller R., 1990. Seismicity and Focal Mechanisms of the Arctic Region and the North American Plate Boundary in Asia. In: The Geology of North America. Vol. 50: The Arctic Ocean Region. Geological Society of America, Border, Colorado, 79–100. https://doi.org/10.1130/DNAG-GNA-L.79.
Gaina C., Werner S.C., Saltus R., Maus S., CAMP-GM Group, 2011. Circum-Arctic Mapping Project: New Magnetic and Gravity Anomaly Maps of the Arctic. In: A.M. Spencer, A. Embry, D.L. Gautier, A.V. Stoupakova, K. Sørensen (Eds), Arctic Petroleum Geology. Geological Society London Memoirs 35 (1), p. 39–48. https://doi.org/10.1144/M35.3.
Glebovsky V.Yu., Kaminsky V.D., Minakov A.N., Merkur’ev S.A., Childers V.A., Brozena J.M., 2006. Formation of the Eurasia Basin in the Arctic Ocean as Inferred from Geohistorical Analysis of the Anomalous Magnetic Field. Geotectonics 40, 263–281. https://doi.org/10.1134/S0016852106040029.
Гуревич Н.И., Астафурова Е.Г., Глебовский В.Ю., Абельская А.А. Некоторые особенности аккреции коры у оси западной части ультранизкоскоростного хребта Гаккеля, Северный Ледовитый океан // Геолого-геофизические характеристики литосферы Арктического региона / Ред. Г.П. Аветисов. СПб: ВНИИОкеангеология, 2004. Вып. 5. С. 87–97.
Korger E.I., 2013. Seismicity and Structure of a Magmatic Accretionary Centre at an Ultraslow Spreading Ridge: The Volcanic Centre at 85° E/85° N, Gakkel Ridge. PhD Thesis. Bremen, 159 p.
Laverov N.P., Lobkovsky L.I., Kononov M.V., Dobretsov N.L., Vernikovsky V.A., Sokolov S.D., Shipilov E.V., 2013. A Geodynamic Model of the Evolution of the Arctic Basin and Adjacent Territories in the Mesozoic and Cenozoic and the Outer Limit of the Russian Continental Shelf. Geotectonics 47, 1–30. https://doi.org/10.1134/S0016852113010044.
Lobkovsky L.I., Sorokhtin N.O., Shipilov E.V., 2021. Crustal Sinking and Formation of the Main Tectonic Structures and Igneous Provinces in the Arctic in the Late Cretaceous–Cenozoic: A View from the Subduction-Convective Model. Doklady Earth Sciences 501, 901–905. https://doi.org/10.1134/S1028334X21110076.
Michael P.J., Langmuir C.H., Dick H.J.B., Snow J.E., Goldsteink S.L., Graham D.W., Lehnertk K., Kurras G., Jokat W., Muhe R., Edmonds H.N., 2003. Magmatic and Amagmatic Seafloor Generation at the Ultraslow-Spreading Gakkel Ridge, Arctic Ocean. Nature 423, 956–961. https://doi.org/10.1038/nature01704.
Мирзоев К.М. Рекомендации по выделению групповых землетрясений // Вопросы инженерной сейсмологии. 1992. Вып. 33. С. 53–57.
Молчан Г.М., Дмитриева О.Е. Идентификация афтершоков: обзор и новые подходы // Вычислительная сейсмология. 1991. Вып. 24. С. 19–50.
Morozov A.N., Vaganova N.V., 2023. Earthquake Catalog of the Gakkel Mid-Ocean Ridge (Arctic Ocean) According to the Data of the Arkhangelsk Seismic Network (AH Code) for the Period from 2013 to 2022. ISC Seismological Dataset Repository. https://doi.org/10.31905/SMUPNWEP.
Morozov A.N., Vaganova N.V., Antonovskaya G.N., Asming V.E., Gabsatarova I.P., Dyagilev R.A., Shakhova E.V., Evtyugina Z.A., 2021. Low‐Magnitude Earthquakes at the Eastern Ultraslow‐Spreading Gakkel Ridge, Arctic Ocean. Seismological Research Letters 92 (4), 2221–2233. https://doi.org/10.1785/0220200308.
Morozov A.N., Vaganova N.V., Ivanova E.V., Konechnaya Y.V., Fedorenko I.V., Mikhaylova Y.A., 2016. New Data about Small-Magnitude Earthquakes of the Ultraslow-Spreading Gakkel Ridge, Arctic Ocean. Journal of Geodynamics 93, 31–41. https://doi.org/10.1016/j.jog.2015.11.002.
Müller C., Jokat W., 2000. Seismic Evidence for Volcanic Activity Discovered in Central Arctic. Eos 81 (24), 265–269. https://doi.org/10.1029/00EO00186.
Omori F., 1895. On Aftershocks of Earthquakes. The Journal of the College of Science, Imperial University, Japan 7 (2), 111–200. https://doi.org/10.15083/00037562.
Peterson J., 1993. Observations and Modelling of Background Seismic Noise. USGS Open-File Report 93–322. Albuquerque, New Mexico, 94 p. https://doi.org/10.3133/ofr93322.
Petrov O., Morozov A., Shokalsky S., Kashubin S., Artemieva I.M., Sobolev N., Petrov E., Ernst R.E., Sergeev S., Smelror M., 2016. Crustal Structure and Tectonic Model of the Arctic Region. Earth-Science Reviews 154, 29–71. https://doi.org/10.1016/j.earscirev.2015.11.013.
Reasenberg P., 1985. Second Order Moment of Central California Seismicity, 1969–1982. Journal of Geophysical Research: Solid Earth 90 (B7), 5479–5495. https://doi.org/10.1029/JB090iB07p05479.
Reves-Sohn R.A., Edmonds H., Humphris S., Shank T., Singh H., Ericsson B., Hedman U., Helmke E. et al., 2007. Scientific Scope and Summary of the Arctic Gakkel Vents (AGAVE) Expedition. In: AGU Fall Meeting (December 10–14, 2007, San Francisco): Abstracts. Vol. 1. P. 7.
Riedel C., Schlindwein V., 2010. Did the 1999 Earthquake Swarm on Gakkel Ridge Open a Volcanic Conduit? A Detailed Teleseismic Data Analysis. Journal of Seismology 14, 505–522. https://doi.org/10.1007/s10950-009-9179-6.
Schlindwein V., 2012. Teleseismic Earthquake Swarms at Ultraslow Spreading Ridges: Indicator for Dyke Intrusions? Geophysical Journal International 190 (1), 442–456. https://doi.org/10.1111/j.1365-246X.2012.05502.x.
Schlindwein V., Demuth A., Korger E., Läderach C., Schmid F., 2015. Seismicity of the Arctic Mid-Ocean Ridge System. Polar Science 9 (1), 146–157. https://doi.org/10.1016/j.polar.2014.10.001.
Schlindwein V., Müller C., Jokat W., 2005. Seismoacoustic Evidence for Volcanic Activity on the Ultraslow-Spreading Gakkel Ridge, Arctic Ocean. Geophysical Research Letters 32 (18), L18306. https://doi.org/10.1029/2005GL023767.
Schlindwein V., Müller C., Jokat W., 2007. Microseismicity of the Ultraslow-Spreading Gakkel Ridge, Arctic Ocean: A Pilot Study. Geophysical Journal International 169 (1), 100–112. https://doi.org/10.1111/j.1365-246X.2006.03308.x.
Schmid F., Schlindwein V., Koulakov I., Plötz A., Scholz J.R., 2017. Magma Plumbing System and Seismicity of an Active Mid-Ocean Ridge Volcano. Scientific Reports 7, 42949. https://doi.org/10.1038/srep42949.
Шебалин П.Н. Цепочки эпицентров как индикатор возрастания радиуса корреляции сейсмичности перед сильными землетрясениями // Вулканология и сейсмология. 2005. № 1. С. 3–15.
Смирнов В.Б. Прогностические аномалии сейсмического режима. I. Методические основы подготовки исходных данных // Геофизические исследования. 2009. Т. 10. № 2. С. 7–22.
Spence W., 1980. Relative Epicenter Determination Using P-Wave Arrival-Time Differences. Bulletin of the Seismological Society of America 70 (1), 171–183. DOI:10.1785/BSSA0700010171.
Steinhaus H., 1956. Sur la Division des Corps Matériels en Parties. Bulletin de l’Académie Polonaise des Sciences 4, 801–804.
Tarasewicz J., Brandsdóttir B., White R.S., Hensch M., Thorbjarnardottir B., 2012. Using Microearthquakes to Track Repeated Magma Intrusions beneath the Eyjafjallajokull Stratovolcano, Iceland. Journal of Geophysical Research: Solid Earth 117 (B9), B00C06. https://doi.org/10.1029/2011JB008751.
Thiede J., Oerter H., 2002. The Expedition ANTARKTIS XVII/2 of the Research Vessel POLARSTERN in 2000. Reports on Polar and Marine Research. Vol. 404. Bremerhaven, 245 p.
Tolstoy M., Bohnenstiehl D.R., Edwards M.H., Kurras G.J., 2001. Seismic Character of Volcanic Activity at the Ultraslow-Spreading Gakkel Ridge. Geology 29 (12), 1139–1142. https://doi.org/10.1130/0091-7613(2001)029%3C1139:SCOVAA%3E2.0.CO;2.
Wanless V.D., Behn M.D., Shaw A.M., Plank T., 2014. Variations in Melting Dynamics and Mantle Compositions along the Eastern Volcanic Zone of the Gakkel Ridge: Insights from Olivine-Hosted Melt Inclusions. Contributions to Mineralogy and Petrology 167, 1005. https://doi.org/10.1007/s00410-014-1005-7.
Wiemer S., Wyss M., 2000. Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America 90 (4), 859–869. https://doi.org/10.1785/0119990114.
op_rights Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_doi https://doi.org/10.5800/GT-2024-15-1-073710.1007/s10618-005-1396-110.5800/GT-2022-13-2-058710.1111/j.1365-246X.2008.03860.x10.1029/2002JB00183010.1111/j.1365-246X.1991.tb02512.x10.1111/j.1365-246X.2009.04491.x10.1038/nature0212810.1038/3505725810.1029/200
container_title Oceanography
_version_ 1801371360540229632
spelling ftjgat:oai:oai.gtcrust.elpub.ru:article/1789 2024-06-09T07:42:34+00:00 EARTHQUAKE SWARMS AS EVIDENCE OF VOLCANO-TECTONIC PROCESSES OF THE SLOWEST SPREADING GAKKEL RIDGE IN THE ARCTIC РОИ ЗЕМЛЕТРЯСЕНИЙ КАК СВИДЕТЕЛЬСТВО ВУЛКАНОТЕКТОНИЧЕСКИХ ПРОЦЕССОВ НА УЛЬТРАМЕДЛЕННОМ СПРЕДИНГОВОМ ХРЕБТЕ ГАККЕЛЯ В АРКТИКЕ А. N. Morozov N. V. Vaganova Y. A. Mikhailova Е. R. Morozova I. V. Starkov А. Н. Морозов Н. В. Ваганова Я. А. Михайлова Е. Р. Морозова И. В. Старков The study was supported by the Russian Science Foundation, project 22-27-00190, "Can low-magnitude earthquake swarms of the slowest spreading Gakkel Ridge in the Arctic be considered as an indicator of present-day magmatism and dike intrusions?". Исследования выполнены при финансовой поддержке РНФ, проект № 22-27-00190 «Рои низкомагнитудных землетрясений на ультрамедленном спрединговом хребте Гаккеля в Арктике – индикатор современного магматизма и внедрения даек?». 2024-02-16 application/pdf https://www.gt-crust.ru/jour/article/view/1789 https://doi.org/10.5800/GT-2024-15-1-0737 rus rus Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch https://www.gt-crust.ru/jour/article/view/1789/797 Agrawal R., Gehrke J., Gunopulos D., Raghavan P., 2005. Automatic Sub Space Clustering of High Dimensional Data. Data Mining Knowledge Discovery 11, 5–33. https://doi.org/10.1007/s10618-005-1396-1 Антоновская Г.Н., Конечная Я.В., Ваганова Н.В., Басакина И.М., Морозов А.Н., Шахова Е.В., Михайлова Я.А., Данилов К.Б. Вклад уникальной научной установки «Архангельская сейсмическая сеть» в изучение сейсмичности Российской Арктики // Геодинамика и тектонофизика. 2022. Т. 13. № 2. 0587. https://doi.org/10.5800/GT-2022-13-2-0587. Аветисов Г.П. Сейсмоактивные зоны Арктики. СПб.: ВНИИ Океангеология, 1996. 186 с. Bohnenstiehl D.R., Dziak R.P., 2008. Mid-Ocean Ridge Seismicity. In: J. Steele, S. Thorpe, K. Turekian (Eds), Encyclopedia of Ocean Sciences. First Online Update. Academic Press, London. Bulletin of the International Seismological Centre Catalogue Search, 2022. Available from: http://www.isc.ac.uk/iscbulletin/search/ (Last Accessed May 06, 2023). Cochran J.R., 2008. Seamount Volcanism along the Gakkel Ridge, Arctic Ocean. Geophysical Journal International 174 (3), 1153–1173. https://doi.org/10.1111/j.1365-246X.2008.03860.x. Cochran J.R., Kurras G.J., Edwards M.H., Coakley B.J., 2003. The Gakkel Ridge: Bathymetry, Gravity Anomalies and Crustal Accretionat Extremely Slow Spreading Rates. Journal of Geophysical Research 108 (В2), 2116. https://doi.org/10.1029/2002JB001830. Davis S.D., Frohlich C., 1991. Single-Link Cluster Analysis, Synthetic Earthquake Catalogues, and Aftershock Identification. Geophysical Journal International 104 (2), 289–306. https://doi.org/10.1111/j.1365-246X.1991.tb02512.x. DeMets C., Gordon R.G., Argus D.F., 2010. Geologically Current Plate Motions. Geophysical Journal International 181 (1), 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x. Dick H.J.B., Lin J., Schouten H., 2003. An Ultraslow-Spreading Class of Ocean Ridge. Nature 426, 405–412. https://doi.org/10.1038/nature02128. Дулин С.К., Розенберг И.Н., Уманский В.И. Методы кластеризации в исследовании массивов геоданных // Системы и средства информатики (Доп. вып.). 2009. С. 86–113. Edwards M.H., Kurras G.J., Tolstoy M., Bohnenstiehl D.R., Coakley B.J., Cochran J.R., 2001. Evidence of Recent Volcanic Activity on the Ultraslow-Spreading Gakkel Ridge. Nature 409, 808–812. https://doi.org/10.1038/35057258. Engen Ø., Eldholm O., Bungum H., 2003. The Arctic Plate Boundary. Journal of Geophysical Research: Solid Earth 108 (B2), 2075. https://doi.org/10.1029/2002JB001809. Fox C.G., Radford W.E., Dziak R.P., Lau T.-K.A., Matsumoto H., Schreiner A.E., 1995. Acoustic Detection of a Seafloor Spreading Episode on the Juan de Fuca Ridge Using Military Hydrophone Arrays. Geophysical Research Letters 22, 131–134. https://doi.org/10.1029/94GL02059. Frohlich C., Davis S.D., 1990. Single-Link Cluster Analysis as a Method to Evaluate Spatial and Temporal Properties of Earthquake Catalogues. Geophysical Journal International 100 (1), 19–32. Fujita K., Cook D.B., Hasegawa H., Forsyth D., Wetmiller R., 1990. Seismicity and Focal Mechanisms of the Arctic Region and the North American Plate Boundary in Asia. In: The Geology of North America. Vol. 50: The Arctic Ocean Region. Geological Society of America, Border, Colorado, 79–100. https://doi.org/10.1130/DNAG-GNA-L.79. Gaina C., Werner S.C., Saltus R., Maus S., CAMP-GM Group, 2011. Circum-Arctic Mapping Project: New Magnetic and Gravity Anomaly Maps of the Arctic. In: A.M. Spencer, A. Embry, D.L. Gautier, A.V. Stoupakova, K. Sørensen (Eds), Arctic Petroleum Geology. Geological Society London Memoirs 35 (1), p. 39–48. https://doi.org/10.1144/M35.3. Glebovsky V.Yu., Kaminsky V.D., Minakov A.N., Merkur’ev S.A., Childers V.A., Brozena J.M., 2006. Formation of the Eurasia Basin in the Arctic Ocean as Inferred from Geohistorical Analysis of the Anomalous Magnetic Field. Geotectonics 40, 263–281. https://doi.org/10.1134/S0016852106040029. Гуревич Н.И., Астафурова Е.Г., Глебовский В.Ю., Абельская А.А. Некоторые особенности аккреции коры у оси западной части ультранизкоскоростного хребта Гаккеля, Северный Ледовитый океан // Геолого-геофизические характеристики литосферы Арктического региона / Ред. Г.П. Аветисов. СПб: ВНИИОкеангеология, 2004. Вып. 5. С. 87–97. Korger E.I., 2013. Seismicity and Structure of a Magmatic Accretionary Centre at an Ultraslow Spreading Ridge: The Volcanic Centre at 85° E/85° N, Gakkel Ridge. PhD Thesis. Bremen, 159 p. Laverov N.P., Lobkovsky L.I., Kononov M.V., Dobretsov N.L., Vernikovsky V.A., Sokolov S.D., Shipilov E.V., 2013. A Geodynamic Model of the Evolution of the Arctic Basin and Adjacent Territories in the Mesozoic and Cenozoic and the Outer Limit of the Russian Continental Shelf. Geotectonics 47, 1–30. https://doi.org/10.1134/S0016852113010044. Lobkovsky L.I., Sorokhtin N.O., Shipilov E.V., 2021. Crustal Sinking and Formation of the Main Tectonic Structures and Igneous Provinces in the Arctic in the Late Cretaceous–Cenozoic: A View from the Subduction-Convective Model. Doklady Earth Sciences 501, 901–905. https://doi.org/10.1134/S1028334X21110076. Michael P.J., Langmuir C.H., Dick H.J.B., Snow J.E., Goldsteink S.L., Graham D.W., Lehnertk K., Kurras G., Jokat W., Muhe R., Edmonds H.N., 2003. Magmatic and Amagmatic Seafloor Generation at the Ultraslow-Spreading Gakkel Ridge, Arctic Ocean. Nature 423, 956–961. https://doi.org/10.1038/nature01704. Мирзоев К.М. Рекомендации по выделению групповых землетрясений // Вопросы инженерной сейсмологии. 1992. Вып. 33. С. 53–57. Молчан Г.М., Дмитриева О.Е. Идентификация афтершоков: обзор и новые подходы // Вычислительная сейсмология. 1991. Вып. 24. С. 19–50. Morozov A.N., Vaganova N.V., 2023. Earthquake Catalog of the Gakkel Mid-Ocean Ridge (Arctic Ocean) According to the Data of the Arkhangelsk Seismic Network (AH Code) for the Period from 2013 to 2022. ISC Seismological Dataset Repository. https://doi.org/10.31905/SMUPNWEP. Morozov A.N., Vaganova N.V., Antonovskaya G.N., Asming V.E., Gabsatarova I.P., Dyagilev R.A., Shakhova E.V., Evtyugina Z.A., 2021. Low‐Magnitude Earthquakes at the Eastern Ultraslow‐Spreading Gakkel Ridge, Arctic Ocean. Seismological Research Letters 92 (4), 2221–2233. https://doi.org/10.1785/0220200308. Morozov A.N., Vaganova N.V., Ivanova E.V., Konechnaya Y.V., Fedorenko I.V., Mikhaylova Y.A., 2016. New Data about Small-Magnitude Earthquakes of the Ultraslow-Spreading Gakkel Ridge, Arctic Ocean. Journal of Geodynamics 93, 31–41. https://doi.org/10.1016/j.jog.2015.11.002. Müller C., Jokat W., 2000. Seismic Evidence for Volcanic Activity Discovered in Central Arctic. Eos 81 (24), 265–269. https://doi.org/10.1029/00EO00186. Omori F., 1895. On Aftershocks of Earthquakes. The Journal of the College of Science, Imperial University, Japan 7 (2), 111–200. https://doi.org/10.15083/00037562. Peterson J., 1993. Observations and Modelling of Background Seismic Noise. USGS Open-File Report 93–322. Albuquerque, New Mexico, 94 p. https://doi.org/10.3133/ofr93322. Petrov O., Morozov A., Shokalsky S., Kashubin S., Artemieva I.M., Sobolev N., Petrov E., Ernst R.E., Sergeev S., Smelror M., 2016. Crustal Structure and Tectonic Model of the Arctic Region. Earth-Science Reviews 154, 29–71. https://doi.org/10.1016/j.earscirev.2015.11.013. Reasenberg P., 1985. Second Order Moment of Central California Seismicity, 1969–1982. Journal of Geophysical Research: Solid Earth 90 (B7), 5479–5495. https://doi.org/10.1029/JB090iB07p05479. Reves-Sohn R.A., Edmonds H., Humphris S., Shank T., Singh H., Ericsson B., Hedman U., Helmke E. et al., 2007. Scientific Scope and Summary of the Arctic Gakkel Vents (AGAVE) Expedition. In: AGU Fall Meeting (December 10–14, 2007, San Francisco): Abstracts. Vol. 1. P. 7. Riedel C., Schlindwein V., 2010. Did the 1999 Earthquake Swarm on Gakkel Ridge Open a Volcanic Conduit? A Detailed Teleseismic Data Analysis. Journal of Seismology 14, 505–522. https://doi.org/10.1007/s10950-009-9179-6. Schlindwein V., 2012. Teleseismic Earthquake Swarms at Ultraslow Spreading Ridges: Indicator for Dyke Intrusions? Geophysical Journal International 190 (1), 442–456. https://doi.org/10.1111/j.1365-246X.2012.05502.x. Schlindwein V., Demuth A., Korger E., Läderach C., Schmid F., 2015. Seismicity of the Arctic Mid-Ocean Ridge System. Polar Science 9 (1), 146–157. https://doi.org/10.1016/j.polar.2014.10.001. Schlindwein V., Müller C., Jokat W., 2005. Seismoacoustic Evidence for Volcanic Activity on the Ultraslow-Spreading Gakkel Ridge, Arctic Ocean. Geophysical Research Letters 32 (18), L18306. https://doi.org/10.1029/2005GL023767. Schlindwein V., Müller C., Jokat W., 2007. Microseismicity of the Ultraslow-Spreading Gakkel Ridge, Arctic Ocean: A Pilot Study. Geophysical Journal International 169 (1), 100–112. https://doi.org/10.1111/j.1365-246X.2006.03308.x. Schmid F., Schlindwein V., Koulakov I., Plötz A., Scholz J.R., 2017. Magma Plumbing System and Seismicity of an Active Mid-Ocean Ridge Volcano. Scientific Reports 7, 42949. https://doi.org/10.1038/srep42949. Шебалин П.Н. Цепочки эпицентров как индикатор возрастания радиуса корреляции сейсмичности перед сильными землетрясениями // Вулканология и сейсмология. 2005. № 1. С. 3–15. Смирнов В.Б. Прогностические аномалии сейсмического режима. I. Методические основы подготовки исходных данных // Геофизические исследования. 2009. Т. 10. № 2. С. 7–22. Spence W., 1980. Relative Epicenter Determination Using P-Wave Arrival-Time Differences. Bulletin of the Seismological Society of America 70 (1), 171–183. DOI:10.1785/BSSA0700010171. Steinhaus H., 1956. Sur la Division des Corps Matériels en Parties. Bulletin de l’Académie Polonaise des Sciences 4, 801–804. Tarasewicz J., Brandsdóttir B., White R.S., Hensch M., Thorbjarnardottir B., 2012. Using Microearthquakes to Track Repeated Magma Intrusions beneath the Eyjafjallajokull Stratovolcano, Iceland. Journal of Geophysical Research: Solid Earth 117 (B9), B00C06. https://doi.org/10.1029/2011JB008751. Thiede J., Oerter H., 2002. The Expedition ANTARKTIS XVII/2 of the Research Vessel POLARSTERN in 2000. Reports on Polar and Marine Research. Vol. 404. Bremerhaven, 245 p. Tolstoy M., Bohnenstiehl D.R., Edwards M.H., Kurras G.J., 2001. Seismic Character of Volcanic Activity at the Ultraslow-Spreading Gakkel Ridge. Geology 29 (12), 1139–1142. https://doi.org/10.1130/0091-7613(2001)029%3C1139:SCOVAA%3E2.0.CO;2. Wanless V.D., Behn M.D., Shaw A.M., Plank T., 2014. Variations in Melting Dynamics and Mantle Compositions along the Eastern Volcanic Zone of the Gakkel Ridge: Insights from Olivine-Hosted Melt Inclusions. Contributions to Mineralogy and Petrology 167, 1005. https://doi.org/10.1007/s00410-014-1005-7. Wiemer S., Wyss M., 2000. Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America 90 (4), 859–869. https://doi.org/10.1785/0119990114. Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Geodynamics & Tectonophysics; Том 15, № 1 (2024); 0737 Геодинамика и тектонофизика; Том 15, № 1 (2024); 0737 2078-502X вулканотектонические процессы Gakkel Ridge low-magnitude earthquakes earthquake swarm volcano-tectonic processes хребет Гаккеля низкомагнитудные землетрясения рой землетрясений info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2024 ftjgat https://doi.org/10.5800/GT-2024-15-1-073710.1007/s10618-005-1396-110.5800/GT-2022-13-2-058710.1111/j.1365-246X.2008.03860.x10.1029/2002JB00183010.1111/j.1365-246X.1991.tb02512.x10.1111/j.1365-246X.2009.04491.x10.1038/nature0212810.1038/3505725810.1029/200 2024-05-15T23:47:45Z Based on the data from the Arctic regional seismic stations, the article presents the results of studying the swarm seismicity of the Gakkel Mid-Ocean Ridge, located in the Arctic Ocean. The active spreading processes of ultraslow ridges with spreading rates of less than 20 mm/yr, which include the Gakkel Ridge, are still poorly understood as compared to the MOR in the Atlantic and Pacific oceans, with spreading rates of more than 25 mm/yr. In 2012–2022, there were identified eight swarms: one within the western volcanic segment of the ridge, others – in the eastern volcanic segment. No earthquake swarms were recorded in the central amagmatic segment of the ridge; the recording therein covers primarily single earthquakes and aftershock sequences. Spatially identified swarms are confied to some volcanic centers revealed earlier from the geological and geophysical data during complex expeditions. The ridge segment at coordinates ∼85…∼93° E is characterized by the most intense manifestations of volcanic processes. The spatial distribution of swarms may also indicate potential presence of volcanic structures that have not yet been identified from the geological, geophysical and geomorphological data. In the temporal domain, there can be preliminarily distinguished a 5-year swarm activation cycle, which, however, requires additional verification over a longer time interval. The swarm seismicity of the slowest spreading Gakkel Ridge cannot be described by a simple model of volcanism and magma intrusion into a symmetrical rift; it is rather a result of a complex interaction between diking and faulting with magma transport along the faults with potentially significant seismic activities. There can probably be suggested a regular combination of the processes of volcanic activation and seismotectonic destruction, which is especially pronounced in the locations of transverse faults. The results described in this article expand our understanding of the manifestation of volcano-tectonic processes occurring within the slowest ... Article in Journal/Newspaper Arctic Arctic Arctic Ocean Polar Science Polar Science Reports on Polar and Marine Research Geodynamics & Tectonophysics Arctic Arctic Ocean Gakkel Ridge ENVELOPE(90.000,90.000,87.000,87.000) Pacific Oceanography