UNDERWATER CANYONS OF THE SOUTHWESTERN OUTSKIRTS OF SOUTHERN BAIKAL AS PRESUMABLE TRANSITERS OF TECHNOGENIC MATERIALS TO THE ABYSSAL SURFACE

Numerous publications by domestic and foreign authors deal with a significant role of underwater canyons in transit of loose material from the littoral to the abyssal surfaces of the seas. Lake Baikal fully corresponds in its hydrodynamic and bathymetric parameters to sea water basins, and the Baika...

Full description

Bibliographic Details
Published in:Geodynamics & Tectonophysics
Main Authors: E. E. Kononov, N. A. Gubin, Е. Е. Кононов, Н. А. Губин
Format: Article in Journal/Newspaper
Language:Russian
Published: Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch 2023
Subjects:
Online Access:https://www.gt-crust.ru/jour/article/view/1628
https://doi.org/10.5800/GT-2023-14-1-0684
id ftjgat:oai:oai.gtcrust.elpub.ru:article/1628
record_format openpolar
institution Open Polar
collection Geodynamics & Tectonophysics (E-Journal)
op_collection_id ftjgat
language Russian
topic загрязнение
digital elevation model
canyon
sediments
transit
pollution
цифровая модель рельефа
каньон
осадки
транзит
spellingShingle загрязнение
digital elevation model
canyon
sediments
transit
pollution
цифровая модель рельефа
каньон
осадки
транзит
E. E. Kononov
N. A. Gubin
Е. Е. Кононов
Н. А. Губин
UNDERWATER CANYONS OF THE SOUTHWESTERN OUTSKIRTS OF SOUTHERN BAIKAL AS PRESUMABLE TRANSITERS OF TECHNOGENIC MATERIALS TO THE ABYSSAL SURFACE
topic_facet загрязнение
digital elevation model
canyon
sediments
transit
pollution
цифровая модель рельефа
каньон
осадки
транзит
description Numerous publications by domestic and foreign authors deal with a significant role of underwater canyons in transit of loose material from the littoral to the abyssal surfaces of the seas. Lake Baikal fully corresponds in its hydrodynamic and bathymetric parameters to sea water basins, and the Baikal canyons are similar in their morphological and morphometric factors to sea canyons. A digital elevation model of the southwest underwater tip of the lake, generated based on a large array of bathymetric data, allowed identifying clearly defined valleys of the Shamanka and Slyudyanka canyons. The data obtained during the study of the canyon-valley area, carried out using special geophysical measuring instruments – Kongsberg EM710S multibeam echosounder and Knudsen CHIRP 3260 profilograph, – and analysis of the published materials showed a rather high degree of confindness of coarse debris to the canyon valleys and alluvial fans which implies their significant role in sediment transit. It has been shown that high seismicity of the Baikal basin and active wave conditions give rise to the formation of movable loose sediment masses and to the occurrence of gravity flows in the canyon valleys. Climate changes over the last decades contribute also to permafrost decomposition in the Baikal basin and to new-sediment transport into the lake. It is implied that an intensive development of the coastline leads to the coastal accumulation of a large amount of industrial and municipal contaminants which can move through the canyons to different distances into the lake water area. To date, there is no definite answer to the question about an actual role of underwater canyons in the transit of technogenic wastes to the abyssal lake surface. This requires organized large-scale specialized fieldwork with the use of high-precision geological-geophysical measuring instruments, and systematic sampling and thorough analysis of the bottom material. Многочисленные зарубежные и отечественные публикации свидетельствуют о большой роли ...
format Article in Journal/Newspaper
author E. E. Kononov
N. A. Gubin
Е. Е. Кононов
Н. А. Губин
author_facet E. E. Kononov
N. A. Gubin
Е. Е. Кононов
Н. А. Губин
author_sort E. E. Kononov
title UNDERWATER CANYONS OF THE SOUTHWESTERN OUTSKIRTS OF SOUTHERN BAIKAL AS PRESUMABLE TRANSITERS OF TECHNOGENIC MATERIALS TO THE ABYSSAL SURFACE
title_short UNDERWATER CANYONS OF THE SOUTHWESTERN OUTSKIRTS OF SOUTHERN BAIKAL AS PRESUMABLE TRANSITERS OF TECHNOGENIC MATERIALS TO THE ABYSSAL SURFACE
title_full UNDERWATER CANYONS OF THE SOUTHWESTERN OUTSKIRTS OF SOUTHERN BAIKAL AS PRESUMABLE TRANSITERS OF TECHNOGENIC MATERIALS TO THE ABYSSAL SURFACE
title_fullStr UNDERWATER CANYONS OF THE SOUTHWESTERN OUTSKIRTS OF SOUTHERN BAIKAL AS PRESUMABLE TRANSITERS OF TECHNOGENIC MATERIALS TO THE ABYSSAL SURFACE
title_full_unstemmed UNDERWATER CANYONS OF THE SOUTHWESTERN OUTSKIRTS OF SOUTHERN BAIKAL AS PRESUMABLE TRANSITERS OF TECHNOGENIC MATERIALS TO THE ABYSSAL SURFACE
title_sort underwater canyons of the southwestern outskirts of southern baikal as presumable transiters of technogenic materials to the abyssal surface
publisher Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch
publishDate 2023
url https://www.gt-crust.ru/jour/article/view/1628
https://doi.org/10.5800/GT-2023-14-1-0684
genre permafrost
genre_facet permafrost
op_source Geodynamics & Tectonophysics; Том 14, № 1 (2023); 0684
Геодинамика и тектонофизика; Том 14, № 1 (2023); 0684
2078-502X
op_relation https://www.gt-crust.ru/jour/article/view/1628/721
Анциферов С.М., Косьян Р.Д. Исследования движения взвешенного обломочного материала в верхней части шельфа мористее валов // Океанология. 1977. Т. 17. № 3. С. 497–505.
Бреховских Л.М., Годин О.А. Акустика неоднородных сред. М.: Наука, 2007. Т. 1. 443 с.
Canals M., Company J.B., Martin D., Sanchez-Vidal A., Ramírez-Llodrà E., 2013. Integrated Study of Mediterranean Deep Canyons: Novel Results and Future Challenges. Progress in Oceanography 118, 1–27. https://doi.org/10.1016/j.pocean.2013.09.004.
De Batist M., Canals M., Sherstyankin P., Alekseev S. & the INTAS Project 99-1669 Team, 2002. A New Bathymetric Map of Lake Baikal. Available from: http://www.lin.irk.ru/intas/index.htm (Last Accessed November 12, 2020).
De Moustier C., 1986. Beyond Bathymetry: Mapping Acoustic Backscattering from the Deep Seafloor with Sea Beam. The Journal of the Acoustical Society of America 79 (2), 316. https://doi.org/10.1121/1.393570.
Evangelinos D., Nelson C., Escutia C., Batist M., Khlystov О.М., 2017. Late Quaternary Climatic Control of Lake Baikal (Russia) Turbidite Systems: Implications for Turbidite Systems Worldwide. Geology 45 (2), 179–182. https://doi.org/10.1130/G38163.1.
Gaida T.C., Mohammadloo T.H., Snellen M., Simons D.G., 2020. Mapping the Seabed and Shallow Subsurface with Multi-Frequency Multibeam Echosounders. Remote Sens 12 (1), 52. https://doi.org/10.3390/rs12010052.
Голдырев Г.C., Выхристюк Л.А., Лазо Ф.И., Шимараева М.К. Особенности состава и строения верхней части осадочной толщи в котловине Байкала // V Всесоюзный симпозиум: Тезисы докладов. Иpкутcк, 1979. С. 37–42.
Gubin N.A., Grigorev K.A., Poletaev A.S., Chensky A.G., 2021. Combined Hydroacoustic Research of Lake Baikal. Journal of Physics: Conference Series 1728, 012005. https://doi.org/10.1088/1742-6596/1728/1/012005.
Губин Н.А., Кононов Е.Е., Полетаев А.С., Ченский А.Г. Подводный рельеф и осадки в районе грязевого вулкана Санкт-Петербург (озеро Байкал) // География и природные ресурсы. 2022. № 3. С. 70–76. https://doi.org/10.15372/GIPR20220308.
Hampton S.E., Izmest’eva L.R., Moore M.V., Katz S.L., Dennis B., Silow E.A., 2008. Sixty Years of Environmental Change in the World’s Largest Freshwater Lake – Lake Baikal, Siberia. Global Change Biology 14 (8), 1947–1958. https://doi.org/10.1111/j.1365-2486.2008.01616.x.
Harris P.T., Whiteway T., 2011. Global Distribution of Large Submarine Canyons: Geomorphic Differences between Active and Passive Continental Margins. Marine Geology 285 (1–4), 69–86. https://doi.org/10.1016/j.margeo.2011.05.008.
Jackson D.R., Richardson M.D., 2007. High-Frequency Seafloor Acoustics. The Underwater Acoustics Series. Springer, New York, 634 р. https://doi.org/10.1007/978-0-387-36945-7.
Карабанов Е.Б., Фиалков В.А. Подводные каньоны Байкала. Новосибирск: Наука, 1987. 104 с.
Кашик С.А., Ломоносова Т.К., Мазилов В.Н. Процессы минералообразования и химический баланс вещества в оз. Байкал // Литосфера Центральной Азии. Новосибирск: Наука, 1996. С. 93–98.
Khlystov O.M., Kononov E.E., Kazakov A.V., Khabuev A.V., Minami H., Gubin N.A., Chenskii A.G., 2018. New Evidence on the Relief of the Southern Underwater Slope in the South Baikal Basin. Geography and Natural Resources 39, 33–38. https://doi.org/10.1134/S1875372818010055.
Kononov E.E., 2021. The Bottom Relief Features of the Basins of Lake Baikal. Geography and Natural Resources 42, 337–344. https://doi.org/10.1134/S1875372821040090.
Kononov E., Khlystov O., De Batist M., Naudts L., Kazakov A., Minami H., Hachikubo A., 2021 (in press). Sublacustrine Canyons of the South and Central Basins of Lake Baikal as a Result of Interaction of Tectonic, Lithological and Climatic Factors. Quaternary International. https://doi.org/10.1016/j.quaint.2021.10.009.
Kononov E.E., Khlystov O.M., Kazakov A.V., Khabuev A.V., De Batist M., Naudts L., Minami H., 2019a. The Lake Floor Morphology of the Southern Baikal Rift Basin as a Result of Holocene and Late Pleistocene Seismogenic and Gravitational Processes. Quaternary International 524, 115–121. https://doi.org/10.1016/j.quaint.2019.01.038.
Kononov E.E., Khlystov O.M., Minami H., Kazakov A.V., Chenskii A.G., Naudts L., 2019b. Canyons of the Eastern Shore of Southern Baikal: Morphology and Genesis. Geography and Natural Resources 40, 37–45. https://doi.org/10.1134/S1875372819010062.
Kushal K.T., Tyce R., Clay С.S., 1995. Interpretation of Sea Beam Backscatter Data Collected at the Laurentian Fan off Nova Scotia Using Acoustic Backscatter Theory. The Journal of the Acoustical Society of America 97 (3), 1545. https://doi.org/10.1121/1.412094.
Озеро Байкал. Прошлое. Настоящее. Будущее: Атлас. Иркутск: Восточно-Сибирское аэрогеодезическое предприятие, 2005. 117 с.
Le Dantec N., Babonneau N., Franzetti М., Delacourt C., Akhtman Y., Ayurzhanaev А., Le Roy Р., 2016. Morphological Analysis of the Upper Reaches of the Kukuy Canyon Derived from Shallow Bathymetry. In: D. Karthe, S. Chalov, N. Kasimov, M. Kappas (Eds), Water and Environment in the Selenga-Baikal Basin: International Research Cooperation for an Ecoregion of Global Relevance. Ibibdem Press, Hannover, p. 179–190.
Лут Б.Ф., Власова Л.К., Фиалков В.А., Лещиков Ф.Н., Мирошниченко А.П., Галкин В.И., Карабанов Е.Б. и др. Литодинамика и осадкообразование Северного Байкала. Новосибирск: Наука, 1984. 290 с.
Mauffrey M.-A., Urgeles R., Bernе S., Canning J., 2017. Development of Submarine Canyon after the Mid-Pleistocene Transition on the Ebro Margin, NW Mediterranean: The Role of Fluvial Connections. Quaternary Science Reviews 158, 77–93. https://doi.org/10.1016/j.quascirev.2017.01.006.
Mohrig D., Marr J.G., 2003. Constraining the Efficiency of Turbidity Current Generation from Submarine Debris Flows and Slides Using Laboratory Experiments. Marine and Petroleum Geology 20 (6–8), 883–899. https://doi.org/10.1016/j.marpetgeo.2003.03.002.
Nelson C.H., Karabanov E.B., Colman S.M., 1995. Late Quaternary Turbidite Systems in Lake Baikal, Russia. In: K.T. Pickering, R.N. Hiscott, N.H. Kenyon, F. Ricci Lucchi, R.D.A. Smith (Eds), Atlas of Deep Water Environments: Architectural Style in Turbidite Systems. Springer, Dordrecht, p. 29–33. https://doi.org/10.1007/978-94-011-1234-5_7.
Och L.M., Müller В., Wichser А., Ulrich А., Vologina E.G., Sturm М., 2014. Rare Earth Elements in the Sediments of Lake Baikal. Chemical Geology 376, 61–75. https://doi.org/10.1016/j.chemgeo.2014.03.018.
Патрикеева Г.И. Донные отложения Малого моря // Труды Байкальской лимнологической станции. М.-Л.: Изд-во АН СССР, 1959. Т. 17. С. 205–254].
Perelman A.I., 1975. Geochemistry of Landscape. Vysshaja Shkola, Moscow, 342 p. (in Russian) [Перельман А.И. Геохимия ландшафта. М.: Высшая школа, 1975. 342 с.
Puig P., Ogston A.S., Mullenbach B.L., Nittrouer C.A., Parsons J.D., Sternberg R.W., 2004. Storm-Induced Sediment Gravity Flows at the Head of the Eel Submarine Canyon, Northern California Margin. Journal of Geophysical Research: Oceans 109, C3. https://doi.org/10.1029/2003JC001918.
Русинек О.Т., Уфимцев Г.Ф., Фиалков В.А. Байкальский ход: Научная экскурсия по Байкалу. Новосибирск: Гео, 2009. 187 с.
Timoshkin O.A., Samsonov D.P., Yamamuro M., Moore M.V., Belykh O.I., Malnik V.V., Sakirko M.V., Shirokaya A.A. et al., 2016. Rapid Ecological Change in the Coastal Zone of Lake Baikal (East Siberia): Is the Site of the World’s Greatest Freshwater Biodiversity in Danger? Journal of Great Lakes Research 42 (3), 487–497. https://doi.org/10.1016/j.jglr.2016.02.011.
Vologina E.G., Sturm M., 2009. Types of Holocene Deposits and Regional Pattern of Sedimentation in Lake Baikal. Russian Geology and Geophysics 50 (8), 722–727. https://doi.org/10.1016/j.rgg.2008.12.012.
Вологина Е.Г., Штурм М., Радзиминович Я.Б. Следы высокой сейсмической активности в поверхностных отложениях озера Байкал, Сибирь // Геодинамика и тектонофизика. 2021. Т. 12. № 3. С. 544–562. https://doi.org/10.5800/GT-2021-12-3-0538.
https://www.gt-crust.ru/jour/article/view/1628
doi:10.5800/GT-2023-14-1-0684
op_rights Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_doi https://doi.org/10.5800/GT-2023-14-1-068410.1016/j.pocean.2013.09.00410.1121/1.39357010.1130/G38163.110.3390/rs1201005210.1088/1742-6596/1728/1/01200510.15372/GIPR2022030810.1111/j.1365-2486.2008.01616.x10.1016/j.margeo.2011.05.00810.1007/978-0-387-36945-
container_title Geodynamics & Tectonophysics
container_volume 14
container_issue 1
_version_ 1781704972954501120
spelling ftjgat:oai:oai.gtcrust.elpub.ru:article/1628 2023-11-05T03:44:37+01:00 UNDERWATER CANYONS OF THE SOUTHWESTERN OUTSKIRTS OF SOUTHERN BAIKAL AS PRESUMABLE TRANSITERS OF TECHNOGENIC MATERIALS TO THE ABYSSAL SURFACE ПОДВОДНЫЕ КАНЬОНЫ ЮГО-ЗАПАДНОЙ ОКРАИНЫ ЮЖНОГО БАЙКАЛА – ВОЗМОЖНЫЕ ТРАНЗИТЕРЫ ТЕХНОГЕННОГО МАТЕРИАЛА НА АБИССАЛЬНУЮ ПОВЕРХНОСТЬ E. E. Kononov N. A. Gubin Е. Е. Кононов Н. А. Губин 2023-02-17 application/pdf https://www.gt-crust.ru/jour/article/view/1628 https://doi.org/10.5800/GT-2023-14-1-0684 rus rus Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch https://www.gt-crust.ru/jour/article/view/1628/721 Анциферов С.М., Косьян Р.Д. Исследования движения взвешенного обломочного материала в верхней части шельфа мористее валов // Океанология. 1977. Т. 17. № 3. С. 497–505. Бреховских Л.М., Годин О.А. Акустика неоднородных сред. М.: Наука, 2007. Т. 1. 443 с. Canals M., Company J.B., Martin D., Sanchez-Vidal A., Ramírez-Llodrà E., 2013. Integrated Study of Mediterranean Deep Canyons: Novel Results and Future Challenges. Progress in Oceanography 118, 1–27. https://doi.org/10.1016/j.pocean.2013.09.004. De Batist M., Canals M., Sherstyankin P., Alekseev S. & the INTAS Project 99-1669 Team, 2002. A New Bathymetric Map of Lake Baikal. Available from: http://www.lin.irk.ru/intas/index.htm (Last Accessed November 12, 2020). De Moustier C., 1986. Beyond Bathymetry: Mapping Acoustic Backscattering from the Deep Seafloor with Sea Beam. The Journal of the Acoustical Society of America 79 (2), 316. https://doi.org/10.1121/1.393570. Evangelinos D., Nelson C., Escutia C., Batist M., Khlystov О.М., 2017. Late Quaternary Climatic Control of Lake Baikal (Russia) Turbidite Systems: Implications for Turbidite Systems Worldwide. Geology 45 (2), 179–182. https://doi.org/10.1130/G38163.1. Gaida T.C., Mohammadloo T.H., Snellen M., Simons D.G., 2020. Mapping the Seabed and Shallow Subsurface with Multi-Frequency Multibeam Echosounders. Remote Sens 12 (1), 52. https://doi.org/10.3390/rs12010052. Голдырев Г.C., Выхристюк Л.А., Лазо Ф.И., Шимараева М.К. Особенности состава и строения верхней части осадочной толщи в котловине Байкала // V Всесоюзный симпозиум: Тезисы докладов. Иpкутcк, 1979. С. 37–42. Gubin N.A., Grigorev K.A., Poletaev A.S., Chensky A.G., 2021. Combined Hydroacoustic Research of Lake Baikal. Journal of Physics: Conference Series 1728, 012005. https://doi.org/10.1088/1742-6596/1728/1/012005. Губин Н.А., Кононов Е.Е., Полетаев А.С., Ченский А.Г. Подводный рельеф и осадки в районе грязевого вулкана Санкт-Петербург (озеро Байкал) // География и природные ресурсы. 2022. № 3. С. 70–76. https://doi.org/10.15372/GIPR20220308. Hampton S.E., Izmest’eva L.R., Moore M.V., Katz S.L., Dennis B., Silow E.A., 2008. Sixty Years of Environmental Change in the World’s Largest Freshwater Lake – Lake Baikal, Siberia. Global Change Biology 14 (8), 1947–1958. https://doi.org/10.1111/j.1365-2486.2008.01616.x. Harris P.T., Whiteway T., 2011. Global Distribution of Large Submarine Canyons: Geomorphic Differences between Active and Passive Continental Margins. Marine Geology 285 (1–4), 69–86. https://doi.org/10.1016/j.margeo.2011.05.008. Jackson D.R., Richardson M.D., 2007. High-Frequency Seafloor Acoustics. The Underwater Acoustics Series. Springer, New York, 634 р. https://doi.org/10.1007/978-0-387-36945-7. Карабанов Е.Б., Фиалков В.А. Подводные каньоны Байкала. Новосибирск: Наука, 1987. 104 с. Кашик С.А., Ломоносова Т.К., Мазилов В.Н. Процессы минералообразования и химический баланс вещества в оз. Байкал // Литосфера Центральной Азии. Новосибирск: Наука, 1996. С. 93–98. Khlystov O.M., Kononov E.E., Kazakov A.V., Khabuev A.V., Minami H., Gubin N.A., Chenskii A.G., 2018. New Evidence on the Relief of the Southern Underwater Slope in the South Baikal Basin. Geography and Natural Resources 39, 33–38. https://doi.org/10.1134/S1875372818010055. Kononov E.E., 2021. The Bottom Relief Features of the Basins of Lake Baikal. Geography and Natural Resources 42, 337–344. https://doi.org/10.1134/S1875372821040090. Kononov E., Khlystov O., De Batist M., Naudts L., Kazakov A., Minami H., Hachikubo A., 2021 (in press). Sublacustrine Canyons of the South and Central Basins of Lake Baikal as a Result of Interaction of Tectonic, Lithological and Climatic Factors. Quaternary International. https://doi.org/10.1016/j.quaint.2021.10.009. Kononov E.E., Khlystov O.M., Kazakov A.V., Khabuev A.V., De Batist M., Naudts L., Minami H., 2019a. The Lake Floor Morphology of the Southern Baikal Rift Basin as a Result of Holocene and Late Pleistocene Seismogenic and Gravitational Processes. Quaternary International 524, 115–121. https://doi.org/10.1016/j.quaint.2019.01.038. Kononov E.E., Khlystov O.M., Minami H., Kazakov A.V., Chenskii A.G., Naudts L., 2019b. Canyons of the Eastern Shore of Southern Baikal: Morphology and Genesis. Geography and Natural Resources 40, 37–45. https://doi.org/10.1134/S1875372819010062. Kushal K.T., Tyce R., Clay С.S., 1995. Interpretation of Sea Beam Backscatter Data Collected at the Laurentian Fan off Nova Scotia Using Acoustic Backscatter Theory. The Journal of the Acoustical Society of America 97 (3), 1545. https://doi.org/10.1121/1.412094. Озеро Байкал. Прошлое. Настоящее. Будущее: Атлас. Иркутск: Восточно-Сибирское аэрогеодезическое предприятие, 2005. 117 с. Le Dantec N., Babonneau N., Franzetti М., Delacourt C., Akhtman Y., Ayurzhanaev А., Le Roy Р., 2016. Morphological Analysis of the Upper Reaches of the Kukuy Canyon Derived from Shallow Bathymetry. In: D. Karthe, S. Chalov, N. Kasimov, M. Kappas (Eds), Water and Environment in the Selenga-Baikal Basin: International Research Cooperation for an Ecoregion of Global Relevance. Ibibdem Press, Hannover, p. 179–190. Лут Б.Ф., Власова Л.К., Фиалков В.А., Лещиков Ф.Н., Мирошниченко А.П., Галкин В.И., Карабанов Е.Б. и др. Литодинамика и осадкообразование Северного Байкала. Новосибирск: Наука, 1984. 290 с. Mauffrey M.-A., Urgeles R., Bernе S., Canning J., 2017. Development of Submarine Canyon after the Mid-Pleistocene Transition on the Ebro Margin, NW Mediterranean: The Role of Fluvial Connections. Quaternary Science Reviews 158, 77–93. https://doi.org/10.1016/j.quascirev.2017.01.006. Mohrig D., Marr J.G., 2003. Constraining the Efficiency of Turbidity Current Generation from Submarine Debris Flows and Slides Using Laboratory Experiments. Marine and Petroleum Geology 20 (6–8), 883–899. https://doi.org/10.1016/j.marpetgeo.2003.03.002. Nelson C.H., Karabanov E.B., Colman S.M., 1995. Late Quaternary Turbidite Systems in Lake Baikal, Russia. In: K.T. Pickering, R.N. Hiscott, N.H. Kenyon, F. Ricci Lucchi, R.D.A. Smith (Eds), Atlas of Deep Water Environments: Architectural Style in Turbidite Systems. Springer, Dordrecht, p. 29–33. https://doi.org/10.1007/978-94-011-1234-5_7. Och L.M., Müller В., Wichser А., Ulrich А., Vologina E.G., Sturm М., 2014. Rare Earth Elements in the Sediments of Lake Baikal. Chemical Geology 376, 61–75. https://doi.org/10.1016/j.chemgeo.2014.03.018. Патрикеева Г.И. Донные отложения Малого моря // Труды Байкальской лимнологической станции. М.-Л.: Изд-во АН СССР, 1959. Т. 17. С. 205–254]. Perelman A.I., 1975. Geochemistry of Landscape. Vysshaja Shkola, Moscow, 342 p. (in Russian) [Перельман А.И. Геохимия ландшафта. М.: Высшая школа, 1975. 342 с. Puig P., Ogston A.S., Mullenbach B.L., Nittrouer C.A., Parsons J.D., Sternberg R.W., 2004. Storm-Induced Sediment Gravity Flows at the Head of the Eel Submarine Canyon, Northern California Margin. Journal of Geophysical Research: Oceans 109, C3. https://doi.org/10.1029/2003JC001918. Русинек О.Т., Уфимцев Г.Ф., Фиалков В.А. Байкальский ход: Научная экскурсия по Байкалу. Новосибирск: Гео, 2009. 187 с. Timoshkin O.A., Samsonov D.P., Yamamuro M., Moore M.V., Belykh O.I., Malnik V.V., Sakirko M.V., Shirokaya A.A. et al., 2016. Rapid Ecological Change in the Coastal Zone of Lake Baikal (East Siberia): Is the Site of the World’s Greatest Freshwater Biodiversity in Danger? Journal of Great Lakes Research 42 (3), 487–497. https://doi.org/10.1016/j.jglr.2016.02.011. Vologina E.G., Sturm M., 2009. Types of Holocene Deposits and Regional Pattern of Sedimentation in Lake Baikal. Russian Geology and Geophysics 50 (8), 722–727. https://doi.org/10.1016/j.rgg.2008.12.012. Вологина Е.Г., Штурм М., Радзиминович Я.Б. Следы высокой сейсмической активности в поверхностных отложениях озера Байкал, Сибирь // Геодинамика и тектонофизика. 2021. Т. 12. № 3. С. 544–562. https://doi.org/10.5800/GT-2021-12-3-0538. https://www.gt-crust.ru/jour/article/view/1628 doi:10.5800/GT-2023-14-1-0684 Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Geodynamics & Tectonophysics; Том 14, № 1 (2023); 0684 Геодинамика и тектонофизика; Том 14, № 1 (2023); 0684 2078-502X загрязнение digital elevation model canyon sediments transit pollution цифровая модель рельефа каньон осадки транзит info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2023 ftjgat https://doi.org/10.5800/GT-2023-14-1-068410.1016/j.pocean.2013.09.00410.1121/1.39357010.1130/G38163.110.3390/rs1201005210.1088/1742-6596/1728/1/01200510.15372/GIPR2022030810.1111/j.1365-2486.2008.01616.x10.1016/j.margeo.2011.05.00810.1007/978-0-387-36945- 2023-10-10T17:00:18Z Numerous publications by domestic and foreign authors deal with a significant role of underwater canyons in transit of loose material from the littoral to the abyssal surfaces of the seas. Lake Baikal fully corresponds in its hydrodynamic and bathymetric parameters to sea water basins, and the Baikal canyons are similar in their morphological and morphometric factors to sea canyons. A digital elevation model of the southwest underwater tip of the lake, generated based on a large array of bathymetric data, allowed identifying clearly defined valleys of the Shamanka and Slyudyanka canyons. The data obtained during the study of the canyon-valley area, carried out using special geophysical measuring instruments – Kongsberg EM710S multibeam echosounder and Knudsen CHIRP 3260 profilograph, – and analysis of the published materials showed a rather high degree of confindness of coarse debris to the canyon valleys and alluvial fans which implies their significant role in sediment transit. It has been shown that high seismicity of the Baikal basin and active wave conditions give rise to the formation of movable loose sediment masses and to the occurrence of gravity flows in the canyon valleys. Climate changes over the last decades contribute also to permafrost decomposition in the Baikal basin and to new-sediment transport into the lake. It is implied that an intensive development of the coastline leads to the coastal accumulation of a large amount of industrial and municipal contaminants which can move through the canyons to different distances into the lake water area. To date, there is no definite answer to the question about an actual role of underwater canyons in the transit of technogenic wastes to the abyssal lake surface. This requires organized large-scale specialized fieldwork with the use of high-precision geological-geophysical measuring instruments, and systematic sampling and thorough analysis of the bottom material. Многочисленные зарубежные и отечественные публикации свидетельствуют о большой роли ... Article in Journal/Newspaper permafrost Geodynamics & Tectonophysics (E-Journal) Geodynamics & Tectonophysics 14 1