TECTONIC STRESS FIELD AT INTERMEDIATE DEPTHS OF THE SOUTHERN FLANK OF THE KURIL-KAMCHATKA SEISMIC ZONE

The study has been done on the orientation of the principal axes of tectonic stress field at intermediate depths of earthquakes of the southern flank of the Kuril-Kamchatka subduction system separately for the upper and lower double seismic focal zones. Use has been made of the NIED and GlobalCMT ca...

Full description

Bibliographic Details
Main Authors: D. A. Safonov, Д. А. Сафонов
Other Authors: The work was funded from the government budget for the IMGG FEB RAS, Работа выполнена в рамках государственного задания ИМГиГ ДВО РАН
Format: Article in Journal/Newspaper
Language:Russian
Published: Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch 2021
Subjects:
Online Access:https://www.gt-crust.ru/jour/article/view/1374
https://doi.org/10.5800/GT-2021-12-4-0564
id ftjgat:oai:oai.gtcrust.elpub.ru:article/1374
record_format openpolar
institution Open Polar
collection Geodynamics & Tectonophysics
op_collection_id ftjgat
language Russian
topic промежуточные глубины
double seismic focal zone
tectonic stress field
slab
intermediate depth
двойная сейсмофокальная зона
поле тектонических напряжений
слэб
spellingShingle промежуточные глубины
double seismic focal zone
tectonic stress field
slab
intermediate depth
двойная сейсмофокальная зона
поле тектонических напряжений
слэб
D. A. Safonov
Д. А. Сафонов
TECTONIC STRESS FIELD AT INTERMEDIATE DEPTHS OF THE SOUTHERN FLANK OF THE KURIL-KAMCHATKA SEISMIC ZONE
topic_facet промежуточные глубины
double seismic focal zone
tectonic stress field
slab
intermediate depth
двойная сейсмофокальная зона
поле тектонических напряжений
слэб
description The study has been done on the orientation of the principal axes of tectonic stress field at intermediate depths of earthquakes of the southern flank of the Kuril-Kamchatka subduction system separately for the upper and lower double seismic focal zones. Use has been made of the NIED and GlobalCMT catalogue data. The computation-based results are presented on schemes of the stressed state of the investigated areas and in tables. In the context of the southern Kuril Islands, evidence has been provided for predominance of the maximum compressive stresses along the slab plane in the upper layer and minimal compressive stresses (deviation extension) in the lower layer. However, the principal axes of maximum and minimum compression are displaced in direction relative to the slab dip: by 30–40° counterclockwise for the compression axis in the upper layer, which coincides with the direction of plate movement, and clockwise for the extension axis in the lower layer. This might be caused by the right-lateral strike-slip component of the Pacific Plate subduction. Unlike the general trend, the orientation of the principal axes of the stress field beneath the central Hokkaido-related segments in the upper layer is almost identical to that in the lower layer. There have also been found the segments exposed to shear stress, with the most extensive located opposite the northern Kunashir Island and beneath the southern Hokkaido Island. The results obtained for major large groups of clusters show good accordance with those published by other authors. The discrepancies relate primarily to small groups of isolated clusters showing local stress field heterogeneities. Исследовано поле ориентаций осей главных тектонических напряжений на участке промежуточных глубин землетрясений южного фланга Курило-Камчатской субдукционной системы отдельно для верхнего и нижнего слоя двойной сейсмофокальной зоны. Привлечены данные каталогов NIED и GlobalCMT. Результаты расчетов представлены в виде схем напряженного состояния изучаемых областей и ...
author2 The work was funded from the government budget for the IMGG FEB RAS
Работа выполнена в рамках государственного задания ИМГиГ ДВО РАН
format Article in Journal/Newspaper
author D. A. Safonov
Д. А. Сафонов
author_facet D. A. Safonov
Д. А. Сафонов
author_sort D. A. Safonov
title TECTONIC STRESS FIELD AT INTERMEDIATE DEPTHS OF THE SOUTHERN FLANK OF THE KURIL-KAMCHATKA SEISMIC ZONE
title_short TECTONIC STRESS FIELD AT INTERMEDIATE DEPTHS OF THE SOUTHERN FLANK OF THE KURIL-KAMCHATKA SEISMIC ZONE
title_full TECTONIC STRESS FIELD AT INTERMEDIATE DEPTHS OF THE SOUTHERN FLANK OF THE KURIL-KAMCHATKA SEISMIC ZONE
title_fullStr TECTONIC STRESS FIELD AT INTERMEDIATE DEPTHS OF THE SOUTHERN FLANK OF THE KURIL-KAMCHATKA SEISMIC ZONE
title_full_unstemmed TECTONIC STRESS FIELD AT INTERMEDIATE DEPTHS OF THE SOUTHERN FLANK OF THE KURIL-KAMCHATKA SEISMIC ZONE
title_sort tectonic stress field at intermediate depths of the southern flank of the kuril-kamchatka seismic zone
publisher Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch
publishDate 2021
url https://www.gt-crust.ru/jour/article/view/1374
https://doi.org/10.5800/GT-2021-12-4-0564
genre Kamchatka
genre_facet Kamchatka
op_source Geodynamics & Tectonophysics; Том 12, № 4 (2021); 929-950
Геодинамика и тектонофизика; Том 12, № 4 (2021); 929-950
2078-502X
op_relation https://www.gt-crust.ru/jour/article/view/1374/599
Álvarez-Gómez J.A., 2019. FMC–Earthquake Focal Mechanisms Data Management, Cluster and Classification. SoftwareX 9, 299–307. https://doi.org/10.1016/j.softx.2019.03.008.
Astiz L., Lay T., Kanamori H., 1988. Large Intermediate-Depth Earthquakes and the Subduction Process. Physics of the Earth and Planetary Interiors 53 (1–2), 80–166. https://doi.org/10.1016/0031-9201(88)90138-0.
Борискина Н.Г., Касаткин С.А., Хомич В.Г. Геология, геодинамика и благороднометалльное оруденение южного фланга Курильской островодужной системы // Успехи современного естествознания. 2019. № 8. С. 44–49.
Chen P.F., Bina C.R., Okal E.A., 2004. A Global Survey of Stress Orientations in Subducting Slabs as Revealed by Intermediate-Depth Earthquakes. Geophysical Journal International 159 (2), 721–733. https://doi.org/10.1111/j.1365-246X.2004.02450.x.
Christova C.V., 2015. Spatial Distribution of the Contemporary Stress Field in the Kurile Wadati-Benioff Zone by Inversion of Earthquake Focal Mechanisms. Journal of Geodynamics 83, 1–17. https://doi.org/10.1016/j.jog.2014.11.001.
Christova C., Hirata N., Kato A., 2006. Contemporary Stress Field in the Wadati-Benioff Zone at the Japan-Kurile Arc-Arc Junction (North Honshu, the Hokkaido Corner and Hokkaido Island) by Inversion of Earthquake Focal Mechanisms. Bulletin of the Earthquake Research Institute 81, 1–18.
Christova C., Tsapanos T., 2000. Depth Distribution of Stresses in the Hokkaido Wadati-Benioff Zone as Deduced by Inversion of Earthquake Focal Mechanisms. Journal of Geodynamics 30 (5), 557–573. https://doi.org/10.1016/S0264-3707(00)00009-0.
Faccenda M., Gerya T.V., Mancktelow N.S., Moresi L., 2012. Fluid Flow during Slab Unbending and Dehydration: Implications for Intermediate‐Depth Seismicity, Slab Weakening and Deep Water Recycling. Geochemistry, Geophysics, Geosystems 13 (1). https://doi.org/10.1029/2011GC003860.
Fujita K., Kanamori H., 1981. Double Seismic Zones and Stresses of Intermediate Depth Earthquakes. Geophysical Journal International 66 (1), 131–156. https://doi.org/10.1111/j.1365-246X.1981.tb05950.x.
Gephart J.W., Forsyth D.W., 1984. An Improved Method for Determining the Regional Stress Tensor Using Earthquake Focal Mechanism Data: Application to the San Fernando Earthquake Sequence. Journal of Geophysical Research: Solid Earth 89 (B11), 9305–9320. https://doi.org/10.1029/JB089iB11p09305.
Ghimire S., Kasahara M., 2009. Spatial Variation in Seismotectonics and Stress Conditions across the Kurile and Japan Trenches Inferred from the Analysis of Focal Mechanism Data in Hokkaido, Northern Japan. Journal of Geodynamics 47 (2–3), 153–166. https://doi.org/10.1016/j.jog.2008.07.007.
Global CMT Catalog, 2020. Available from: https://www.globalcmt.org/CMTsearch.html (Last accessed November 16, 2020).
Hasegawa A., Umino N., Takagi A., 1978. Double-Planed Structure of the Deep Seismic Zone in the Northeastern Japan Arc. Tectonophysics 47 (1–2), 43–58. https://doi.org/10.1016/0040-1951(78)90150-6.
Hayes G.P., Moore G.L., Portner D.E., Hearne M., Flamme H., Furtney M., Smoczyk G.M., 2018. Slab2, a Comprehensive Subduction Zone Geometry Model. Science 362 (6410), 58–61. https://doi.org/10.1126/science.aat4723.
Jiao W., Silver P.G., Fei Y., Prewitt C.T., 2000. Do Intermediate‐and Deep‐Focus Earthquakes Occur on Preexisting Weak Zones? An Examination of the Tonga Subduction Zone. Journal of Geophysical Research: Solid Earth 105 (B12), 28125–28138. https://doi.org/10.1029/2000JB900314.
Kasahara J., Sato T., Mochizuki K., Kobayashi K., 1997. Paleotectonic Structures and Their Influence on Recent Seismo‐Tectonics in the South Kuril Subduction Zone. Island Arc 6 (3), 267–280. https://doi.org/10.1111/j.1440-1738.1997.tb00177.x.
Kasahara M., Sasatani T., 1985. Source Characteristics of the Kunashiri Strait Earthquake of December 6, 1978 as Deduced from Strain Seismograms. Physics of the Earth and Planetary Interiors 37 (2–3), 124–134. https://doi.org/10.1016/0031-9201(85)90046-9.
Katsumata K., Wada N., Kasahara M., 2003. Newly Imaged Shape of the Deep Seismic Zone within the Subducting Pacific Plate beneath the Hokkaido Corner, Japan‐Kurile Arc‐Arc Junction. Journal of Geophysical Research: Solid Earth 108 (B12). https://doi.org/10.1029/2002JB002175.
Kirby S.H., Durham W.B., Stern L.A., 1991. Mantle Phase Changes and Deep-Earthquake Faulting in Subducting Lithosphere. Science 252 (5003), 216–225. https://doi.org/10.1126/science.252.5003.216.
Lay T., Ammon C.J., Kanamori H., Kim M.J., Xue L., 2011. Outer Trench-Slope Faulting and the 2011 Mw 9.0 off the Pacific Coast of Tohoku Earthquake. Earth, Planets and Space 63 (37), 713–718. https://doi.org/10.5047/eps.2011.05.006.
NIED F-net Broadband Seismograph Network, 2020. Available from: http://www.fnet.bosai.go.jp (Last accessed November 16, 2020).
Ozel N., Moriya T., 1999. Different Stress Directions in the Aftershock Focal Mechanisms of the Kushiro-Oki Earthquake of Jan. 15, 1993, SE Hokkaido, Japan, and Horizontal Rupture in the Double Seismic Zone. Tectonophysics 313 (3), 307–327. https://doi.org/10.1016/S0040-1951(99)00207-3.
Полец А.Ю. Напряженно-деформированное состояние зоны глубокофокусных землетрясений региона Японского моря // Геосистемы переходных зон. 2018. Т. 2. № 4. С. 302–311. http://dx.doi.org/10.30730/2541-8912.2018.2.4.302-311.
Поплавская Л.Н., Рудик М.И., Нагорных Т.В., Сафонов Д.А. Каталог механизмов очагов сильных (М≥6.0) землетрясений Курило-Охотского региона 1964–2009 гг. Владивосток: Дальнаука, 2011. 131 с.
Prytkov A.S., Vasilenko N.F., Frolov D.I., 2017. Recent Geodynamics of the Kuril Subduction Zone. Russian Journal of Pacific Geology 11, 19–24. https://doi.org/10.1134/S1819714017010067.
Rebetsky Yu.L., 1999. Methods for Reconstructing Tectonic Stresses and Seismotectonic Deformations Based on the Modern Theory of Plasticity. Doklady Earth Sciences 365 (3), 370–373.
Ребецкий Ю.Л. Развитие метода катакластического анализа сколов для оценки величин тектонических напряжений // Доклады Академии наук. 2003 Т. 388. № 2. С. 237–241.
Ребецкий Ю.Л. Тектонические напряжения и прочность горных массивов. М.: Наука, 2007. 406 с.
Ребецкий Ю.Л., Полец А.Ю. Напряженное состояние литосферы Японии перед катастрофическим землетрясением Тохоку 11.03.2011 // Геодинамика и тектонофизика. 2014. Т. 5. № 2. С. 469–506. https://doi.org/10.5800/GT-2014-5-2-0137.
Rebetsky Yu.L., Polets A.Yu., 2019. The State of Stress in the Aftershock Area of the March 11, 2011 Tohoku Earthquake. In: Geodynamical Processes and Natural Hazards. Proceedings of the III National Scientific Conference with Foreign Participants (May 27–31, 2019, Yuzhno-Sakhalinsk). IOP Conference Series: Earth and Environmental Science 324, 012005. http://dx.doi.org/10.1088/1755-1315/324/1/012005.
Родкин М.В., Рундквист Д.В. Геофлюидогеодинамика. Приложение к сейсмологии, тектонике, процессам рудо- и нефтегенеза. Долгопрудный: Интеллект, 2017. 288 с.
Сафонов Д.А. Пространственное распределение тектонических напряжений в южной глубокой части Курило-Камчатской зоны субдукции // Геосистемы переходных зон. 2019. Т. 3. № 2. С. 175–188. http://dx.doi.org/10.30730/2541-8912.2019.3.2.175-188.
Сафонов Д.А. Реконструкция поля тектонических напряжений глубокой части южного сегмента Курило-Камчатской и северного сегмента Японской зоны субдукции // Геодинамика и тектонофизика. 2020. Т. 11. № 4. С. 743–755. https://doi.org/10.5800/GT-2020-11-4-0504.
Safonov D.A., Konovalov A.V., Zlobin T.K., 2015. The Urup Earthquake Sequence of 2012–2013. Journal of Volcanology and Seismology 9, 402–411. https://doi.org/10.1134/S074204631506007X.
Селивёрстов Н.И. Структура сейсмофокальной зоны Камчатки // Вестник КРАУНЦ. Серия: Науки о Земле. 2007. Вып. 9. № 1. С. 10–26.
Sykes L.R., 1966. The Seismicity and Deep Structure of Island Arcs. Journal of Geophysical Research 71 (12), 2981–3006. https://doi.org/10.1029/JZ071i012p02981.
Terakawa T., Matsu’ura M., 2010. The 3‐D Tectonic Stress Fields in and around Japan Inverted from Centroid Moment Tensor Data of Seismic Events. Tectonics 29 (6). https://doi.org/10.1029/2009TC002626.
Шикотанское землетрясение и цунами 4(5) октября 1994 года // Хроника событий, анализ последствий и современное состояние проблемы: Сборник статей / Ред. И.Н. Тихонов, Г.В. Шевченко. Южно-Сахалинск: ИМГиГ ДВО РАН, 2015. 128 с.
Zlobin T.K., Safonov D.A., Polets A.Yu., 2011. Distribution of Earthquakes by the Types of the Source Motions in the Kuril-Okhotsk Region. Doklady Earth Sciences 440, 1410–1412. https://doi.org/10.1134/S1028334X11100096.
https://www.gt-crust.ru/jour/article/view/1374
doi:10.5800/GT-2021-12-4-0564
op_rights Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_doi https://doi.org/10.5800/GT-2021-12-4-056410.1016/j.softx.2019.03.00810.1016/0031-9201(88)90138-010.1111/j.1365-246X.2004.02450.x10.1016/j.jog.2014.11.00110.1016/S0264-3707(00)00009-010.1029/2011GC00386010.1111/j.1365-246X.1981.tb05950.x10.1029/JB089iB11p0
_version_ 1810453943266836480
spelling ftjgat:oai:oai.gtcrust.elpub.ru:article/1374 2024-09-15T18:15:58+00:00 TECTONIC STRESS FIELD AT INTERMEDIATE DEPTHS OF THE SOUTHERN FLANK OF THE KURIL-KAMCHATKA SEISMIC ZONE ПОЛЕ ТЕКТОНИЧЕСКИХ НАПРЯЖЕНИЙ НА ПРОМЕЖУТОЧНЫХ ГЛУБИНАХ ЮЖНОГО ФЛАНГА КУРИЛО-КАМЧАТСКОЙ СЕЙСМОФОКАЛЬНОЙ ЗОНЫ D. A. Safonov Д. А. Сафонов The work was funded from the government budget for the IMGG FEB RAS Работа выполнена в рамках государственного задания ИМГиГ ДВО РАН 2021-12-14 application/pdf https://www.gt-crust.ru/jour/article/view/1374 https://doi.org/10.5800/GT-2021-12-4-0564 rus rus Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch https://www.gt-crust.ru/jour/article/view/1374/599 Álvarez-Gómez J.A., 2019. FMC–Earthquake Focal Mechanisms Data Management, Cluster and Classification. SoftwareX 9, 299–307. https://doi.org/10.1016/j.softx.2019.03.008. Astiz L., Lay T., Kanamori H., 1988. Large Intermediate-Depth Earthquakes and the Subduction Process. Physics of the Earth and Planetary Interiors 53 (1–2), 80–166. https://doi.org/10.1016/0031-9201(88)90138-0. Борискина Н.Г., Касаткин С.А., Хомич В.Г. Геология, геодинамика и благороднометалльное оруденение южного фланга Курильской островодужной системы // Успехи современного естествознания. 2019. № 8. С. 44–49. Chen P.F., Bina C.R., Okal E.A., 2004. A Global Survey of Stress Orientations in Subducting Slabs as Revealed by Intermediate-Depth Earthquakes. Geophysical Journal International 159 (2), 721–733. https://doi.org/10.1111/j.1365-246X.2004.02450.x. Christova C.V., 2015. Spatial Distribution of the Contemporary Stress Field in the Kurile Wadati-Benioff Zone by Inversion of Earthquake Focal Mechanisms. Journal of Geodynamics 83, 1–17. https://doi.org/10.1016/j.jog.2014.11.001. Christova C., Hirata N., Kato A., 2006. Contemporary Stress Field in the Wadati-Benioff Zone at the Japan-Kurile Arc-Arc Junction (North Honshu, the Hokkaido Corner and Hokkaido Island) by Inversion of Earthquake Focal Mechanisms. Bulletin of the Earthquake Research Institute 81, 1–18. Christova C., Tsapanos T., 2000. Depth Distribution of Stresses in the Hokkaido Wadati-Benioff Zone as Deduced by Inversion of Earthquake Focal Mechanisms. Journal of Geodynamics 30 (5), 557–573. https://doi.org/10.1016/S0264-3707(00)00009-0. Faccenda M., Gerya T.V., Mancktelow N.S., Moresi L., 2012. Fluid Flow during Slab Unbending and Dehydration: Implications for Intermediate‐Depth Seismicity, Slab Weakening and Deep Water Recycling. Geochemistry, Geophysics, Geosystems 13 (1). https://doi.org/10.1029/2011GC003860. Fujita K., Kanamori H., 1981. Double Seismic Zones and Stresses of Intermediate Depth Earthquakes. Geophysical Journal International 66 (1), 131–156. https://doi.org/10.1111/j.1365-246X.1981.tb05950.x. Gephart J.W., Forsyth D.W., 1984. An Improved Method for Determining the Regional Stress Tensor Using Earthquake Focal Mechanism Data: Application to the San Fernando Earthquake Sequence. Journal of Geophysical Research: Solid Earth 89 (B11), 9305–9320. https://doi.org/10.1029/JB089iB11p09305. Ghimire S., Kasahara M., 2009. Spatial Variation in Seismotectonics and Stress Conditions across the Kurile and Japan Trenches Inferred from the Analysis of Focal Mechanism Data in Hokkaido, Northern Japan. Journal of Geodynamics 47 (2–3), 153–166. https://doi.org/10.1016/j.jog.2008.07.007. Global CMT Catalog, 2020. Available from: https://www.globalcmt.org/CMTsearch.html (Last accessed November 16, 2020). Hasegawa A., Umino N., Takagi A., 1978. Double-Planed Structure of the Deep Seismic Zone in the Northeastern Japan Arc. Tectonophysics 47 (1–2), 43–58. https://doi.org/10.1016/0040-1951(78)90150-6. Hayes G.P., Moore G.L., Portner D.E., Hearne M., Flamme H., Furtney M., Smoczyk G.M., 2018. Slab2, a Comprehensive Subduction Zone Geometry Model. Science 362 (6410), 58–61. https://doi.org/10.1126/science.aat4723. Jiao W., Silver P.G., Fei Y., Prewitt C.T., 2000. Do Intermediate‐and Deep‐Focus Earthquakes Occur on Preexisting Weak Zones? An Examination of the Tonga Subduction Zone. Journal of Geophysical Research: Solid Earth 105 (B12), 28125–28138. https://doi.org/10.1029/2000JB900314. Kasahara J., Sato T., Mochizuki K., Kobayashi K., 1997. Paleotectonic Structures and Their Influence on Recent Seismo‐Tectonics in the South Kuril Subduction Zone. Island Arc 6 (3), 267–280. https://doi.org/10.1111/j.1440-1738.1997.tb00177.x. Kasahara M., Sasatani T., 1985. Source Characteristics of the Kunashiri Strait Earthquake of December 6, 1978 as Deduced from Strain Seismograms. Physics of the Earth and Planetary Interiors 37 (2–3), 124–134. https://doi.org/10.1016/0031-9201(85)90046-9. Katsumata K., Wada N., Kasahara M., 2003. Newly Imaged Shape of the Deep Seismic Zone within the Subducting Pacific Plate beneath the Hokkaido Corner, Japan‐Kurile Arc‐Arc Junction. Journal of Geophysical Research: Solid Earth 108 (B12). https://doi.org/10.1029/2002JB002175. Kirby S.H., Durham W.B., Stern L.A., 1991. Mantle Phase Changes and Deep-Earthquake Faulting in Subducting Lithosphere. Science 252 (5003), 216–225. https://doi.org/10.1126/science.252.5003.216. Lay T., Ammon C.J., Kanamori H., Kim M.J., Xue L., 2011. Outer Trench-Slope Faulting and the 2011 Mw 9.0 off the Pacific Coast of Tohoku Earthquake. Earth, Planets and Space 63 (37), 713–718. https://doi.org/10.5047/eps.2011.05.006. NIED F-net Broadband Seismograph Network, 2020. Available from: http://www.fnet.bosai.go.jp (Last accessed November 16, 2020). Ozel N., Moriya T., 1999. Different Stress Directions in the Aftershock Focal Mechanisms of the Kushiro-Oki Earthquake of Jan. 15, 1993, SE Hokkaido, Japan, and Horizontal Rupture in the Double Seismic Zone. Tectonophysics 313 (3), 307–327. https://doi.org/10.1016/S0040-1951(99)00207-3. Полец А.Ю. Напряженно-деформированное состояние зоны глубокофокусных землетрясений региона Японского моря // Геосистемы переходных зон. 2018. Т. 2. № 4. С. 302–311. http://dx.doi.org/10.30730/2541-8912.2018.2.4.302-311. Поплавская Л.Н., Рудик М.И., Нагорных Т.В., Сафонов Д.А. Каталог механизмов очагов сильных (М≥6.0) землетрясений Курило-Охотского региона 1964–2009 гг. Владивосток: Дальнаука, 2011. 131 с. Prytkov A.S., Vasilenko N.F., Frolov D.I., 2017. Recent Geodynamics of the Kuril Subduction Zone. Russian Journal of Pacific Geology 11, 19–24. https://doi.org/10.1134/S1819714017010067. Rebetsky Yu.L., 1999. Methods for Reconstructing Tectonic Stresses and Seismotectonic Deformations Based on the Modern Theory of Plasticity. Doklady Earth Sciences 365 (3), 370–373. Ребецкий Ю.Л. Развитие метода катакластического анализа сколов для оценки величин тектонических напряжений // Доклады Академии наук. 2003 Т. 388. № 2. С. 237–241. Ребецкий Ю.Л. Тектонические напряжения и прочность горных массивов. М.: Наука, 2007. 406 с. Ребецкий Ю.Л., Полец А.Ю. Напряженное состояние литосферы Японии перед катастрофическим землетрясением Тохоку 11.03.2011 // Геодинамика и тектонофизика. 2014. Т. 5. № 2. С. 469–506. https://doi.org/10.5800/GT-2014-5-2-0137. Rebetsky Yu.L., Polets A.Yu., 2019. The State of Stress in the Aftershock Area of the March 11, 2011 Tohoku Earthquake. In: Geodynamical Processes and Natural Hazards. Proceedings of the III National Scientific Conference with Foreign Participants (May 27–31, 2019, Yuzhno-Sakhalinsk). IOP Conference Series: Earth and Environmental Science 324, 012005. http://dx.doi.org/10.1088/1755-1315/324/1/012005. Родкин М.В., Рундквист Д.В. Геофлюидогеодинамика. Приложение к сейсмологии, тектонике, процессам рудо- и нефтегенеза. Долгопрудный: Интеллект, 2017. 288 с. Сафонов Д.А. Пространственное распределение тектонических напряжений в южной глубокой части Курило-Камчатской зоны субдукции // Геосистемы переходных зон. 2019. Т. 3. № 2. С. 175–188. http://dx.doi.org/10.30730/2541-8912.2019.3.2.175-188. Сафонов Д.А. Реконструкция поля тектонических напряжений глубокой части южного сегмента Курило-Камчатской и северного сегмента Японской зоны субдукции // Геодинамика и тектонофизика. 2020. Т. 11. № 4. С. 743–755. https://doi.org/10.5800/GT-2020-11-4-0504. Safonov D.A., Konovalov A.V., Zlobin T.K., 2015. The Urup Earthquake Sequence of 2012–2013. Journal of Volcanology and Seismology 9, 402–411. https://doi.org/10.1134/S074204631506007X. Селивёрстов Н.И. Структура сейсмофокальной зоны Камчатки // Вестник КРАУНЦ. Серия: Науки о Земле. 2007. Вып. 9. № 1. С. 10–26. Sykes L.R., 1966. The Seismicity and Deep Structure of Island Arcs. Journal of Geophysical Research 71 (12), 2981–3006. https://doi.org/10.1029/JZ071i012p02981. Terakawa T., Matsu’ura M., 2010. The 3‐D Tectonic Stress Fields in and around Japan Inverted from Centroid Moment Tensor Data of Seismic Events. Tectonics 29 (6). https://doi.org/10.1029/2009TC002626. Шикотанское землетрясение и цунами 4(5) октября 1994 года // Хроника событий, анализ последствий и современное состояние проблемы: Сборник статей / Ред. И.Н. Тихонов, Г.В. Шевченко. Южно-Сахалинск: ИМГиГ ДВО РАН, 2015. 128 с. Zlobin T.K., Safonov D.A., Polets A.Yu., 2011. Distribution of Earthquakes by the Types of the Source Motions in the Kuril-Okhotsk Region. Doklady Earth Sciences 440, 1410–1412. https://doi.org/10.1134/S1028334X11100096. https://www.gt-crust.ru/jour/article/view/1374 doi:10.5800/GT-2021-12-4-0564 Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Geodynamics & Tectonophysics; Том 12, № 4 (2021); 929-950 Геодинамика и тектонофизика; Том 12, № 4 (2021); 929-950 2078-502X промежуточные глубины double seismic focal zone tectonic stress field slab intermediate depth двойная сейсмофокальная зона поле тектонических напряжений слэб info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2021 ftjgat https://doi.org/10.5800/GT-2021-12-4-056410.1016/j.softx.2019.03.00810.1016/0031-9201(88)90138-010.1111/j.1365-246X.2004.02450.x10.1016/j.jog.2014.11.00110.1016/S0264-3707(00)00009-010.1029/2011GC00386010.1111/j.1365-246X.1981.tb05950.x10.1029/JB089iB11p0 2024-07-05T03:17:07Z The study has been done on the orientation of the principal axes of tectonic stress field at intermediate depths of earthquakes of the southern flank of the Kuril-Kamchatka subduction system separately for the upper and lower double seismic focal zones. Use has been made of the NIED and GlobalCMT catalogue data. The computation-based results are presented on schemes of the stressed state of the investigated areas and in tables. In the context of the southern Kuril Islands, evidence has been provided for predominance of the maximum compressive stresses along the slab plane in the upper layer and minimal compressive stresses (deviation extension) in the lower layer. However, the principal axes of maximum and minimum compression are displaced in direction relative to the slab dip: by 30–40° counterclockwise for the compression axis in the upper layer, which coincides with the direction of plate movement, and clockwise for the extension axis in the lower layer. This might be caused by the right-lateral strike-slip component of the Pacific Plate subduction. Unlike the general trend, the orientation of the principal axes of the stress field beneath the central Hokkaido-related segments in the upper layer is almost identical to that in the lower layer. There have also been found the segments exposed to shear stress, with the most extensive located opposite the northern Kunashir Island and beneath the southern Hokkaido Island. The results obtained for major large groups of clusters show good accordance with those published by other authors. The discrepancies relate primarily to small groups of isolated clusters showing local stress field heterogeneities. Исследовано поле ориентаций осей главных тектонических напряжений на участке промежуточных глубин землетрясений южного фланга Курило-Камчатской субдукционной системы отдельно для верхнего и нижнего слоя двойной сейсмофокальной зоны. Привлечены данные каталогов NIED и GlobalCMT. Результаты расчетов представлены в виде схем напряженного состояния изучаемых областей и ... Article in Journal/Newspaper Kamchatka Geodynamics & Tectonophysics