TIME CONSTRAINTS ON THE FORMATION OF THE KANDALAKSHA AND KERETSK GRABENS OF THE WHITE SEA PALEO-RIFT SYSTEM FROM NEW ISOTOPIC GEOCHRONOLOGICAL DATA

Initially, the age and stratigraphic position of the Tersk formation were determined with respect to the fact that this formation overlaps the Early Proterozoic granitoids. Its top was marked by the rocks penetrated by the Late Devonian alkaline intrusions, including explosion pipes.This article pre...

Full description

Bibliographic Details
Published in:Geodynamics & Tectonophysics
Main Authors: N. B. Kuznetsov, A. S. Baluev, E. N. Terekhov, S. Yu. Kolodyazhnyi, E. S. Przhiyalgovskii, T. V. Romanyuk, A. S. Dubensky, V. S. Sheshukov, S. M. Lyapunov, T. B. Bayanova, P. A. Serov, Н. Б. Кузнецов, А. С. Балуев, Е. Н. Терехов, С. Ю. Колодяжный, Е. С. Пржиялговский, Т. В. Романюк, А. С. Дубенский, В. С. Шешуков, С. М. Ляпунов, Т. Б. Баянова, П. А. Серов
Other Authors: The study was budgeted by the Geological Institute RAS (Laboratory budget) and supported by the Russian Foundation for Basic Research (Project 18-05-00485). The geochronological data were consolidated and systematized with the financial support of the RF Ministry of Education and Science (Megagrant 075-15-2019-1883 – Orogenesis: Formation and Growth of Continents and Supercontinents)., Работа выполнена в рамках бюджетной темы лаборатории ГИН РАН при поддержке РФФИ, проект № 18-05-00485. Сбор и систематизация геохронологических данных выполнены при финансовой поддержке МОН РФ (мегагрант 075-15-2019-1883, «Орогенез: образование и рост континентов и суперконтинентов»).
Format: Article in Journal/Newspaper
Language:Russian
Published: Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch 2021
Subjects:
Online Access:https://www.gt-crust.ru/jour/article/view/1241
https://doi.org/10.5800/GT-2021-12-3-0540
id ftjgat:oai:oai.gtcrust.elpub.ru:article/1241
record_format openpolar
institution Open Polar
collection Geodynamics & Tectonophysics (E-Journal)
op_collection_id ftjgat
language Russian
topic U–Pb датирование
White Sea rift system (WSRS)
Keretsk and Kandalaksha grabens
Tersk formation
detrital zircon grains
U-Pb dating
рифтовая система Белого моря
Кандалакшский и Керецкий грабены
терская свита
зерна детритового циркона
spellingShingle U–Pb датирование
White Sea rift system (WSRS)
Keretsk and Kandalaksha grabens
Tersk formation
detrital zircon grains
U-Pb dating
рифтовая система Белого моря
Кандалакшский и Керецкий грабены
терская свита
зерна детритового циркона
N. B. Kuznetsov
A. S. Baluev
E. N. Terekhov
S. Yu. Kolodyazhnyi
E. S. Przhiyalgovskii
T. V. Romanyuk
A. S. Dubensky
V. S. Sheshukov
S. M. Lyapunov
T. B. Bayanova
P. A. Serov
Н. Б. Кузнецов
А. С. Балуев
Е. Н. Терехов
С. Ю. Колодяжный
Е. С. Пржиялговский
Т. В. Романюк
А. С. Дубенский
В. С. Шешуков
С. М. Ляпунов
Т. Б. Баянова
П. А. Серов
TIME CONSTRAINTS ON THE FORMATION OF THE KANDALAKSHA AND KERETSK GRABENS OF THE WHITE SEA PALEO-RIFT SYSTEM FROM NEW ISOTOPIC GEOCHRONOLOGICAL DATA
topic_facet U–Pb датирование
White Sea rift system (WSRS)
Keretsk and Kandalaksha grabens
Tersk formation
detrital zircon grains
U-Pb dating
рифтовая система Белого моря
Кандалакшский и Керецкий грабены
терская свита
зерна детритового циркона
description Initially, the age and stratigraphic position of the Tersk formation were determined with respect to the fact that this formation overlaps the Early Proterozoic granitoids. Its top was marked by the rocks penetrated by the Late Devonian alkaline intrusions, including explosion pipes.This article presents the U-Pb isotopic dating of detrital zircon grains (dZr) from sandstones of the Tersk formation. It describes the geochemical compositions of the rocks and the Sm-Nd study results. In our study, the weighted average age of four youngest dZr grains from the sandstones of the Tersk formation is 1145±20 Ma, which suggests that the rocks above the studied rock layer (see the Tersk formation cross-section) are is not older than the end of the Middle Riphean. The U-Pb isotopic ages of dZr grains (provenance signals) from the sandstones of the Tersk formation were compared to the ages of other Upper Precambrian clastic strata in the northeastern East European platform (EEP) and adjacent areas. Our comparative analysis shows that these rocks significantly differ in age. This conclusion is in good agreement with the idea that at the end of the Middle and during the Late Riphean, several small (mainly closed) basins separated by uplifts dominated in the paleogeographic setting of the area wherein the White Sea rift system (WSRS) formed and developed. Temporal connections of these basins with the ocean were possible. Such paleogeographic setting does not favour the development of large rivers; this is why the grabens are mainly filled with local rock materials. The Keretsk and Kandalaksha grabens (WSRS) are filled with marine sediments eroded from the grabens walls. The local sediment sources include eclogite complexes (~1.9 Ga), which basic magmatism is dated at ~2.4–2.5 and ~2.7–2.9 Ga. Any potential primary sources for dZr grains are lacking in the area near the Keretsk graben. We suggest that such grains occurred due to recycling of the secondary sources of zircon, i.e. originated from ancient local sedimentary ...
author2 The study was budgeted by the Geological Institute RAS (Laboratory budget) and supported by the Russian Foundation for Basic Research (Project 18-05-00485). The geochronological data were consolidated and systematized with the financial support of the RF Ministry of Education and Science (Megagrant 075-15-2019-1883 – Orogenesis: Formation and Growth of Continents and Supercontinents).
Работа выполнена в рамках бюджетной темы лаборатории ГИН РАН при поддержке РФФИ, проект № 18-05-00485. Сбор и систематизация геохронологических данных выполнены при финансовой поддержке МОН РФ (мегагрант 075-15-2019-1883, «Орогенез: образование и рост континентов и суперконтинентов»).
format Article in Journal/Newspaper
author N. B. Kuznetsov
A. S. Baluev
E. N. Terekhov
S. Yu. Kolodyazhnyi
E. S. Przhiyalgovskii
T. V. Romanyuk
A. S. Dubensky
V. S. Sheshukov
S. M. Lyapunov
T. B. Bayanova
P. A. Serov
Н. Б. Кузнецов
А. С. Балуев
Е. Н. Терехов
С. Ю. Колодяжный
Е. С. Пржиялговский
Т. В. Романюк
А. С. Дубенский
В. С. Шешуков
С. М. Ляпунов
Т. Б. Баянова
П. А. Серов
author_facet N. B. Kuznetsov
A. S. Baluev
E. N. Terekhov
S. Yu. Kolodyazhnyi
E. S. Przhiyalgovskii
T. V. Romanyuk
A. S. Dubensky
V. S. Sheshukov
S. M. Lyapunov
T. B. Bayanova
P. A. Serov
Н. Б. Кузнецов
А. С. Балуев
Е. Н. Терехов
С. Ю. Колодяжный
Е. С. Пржиялговский
Т. В. Романюк
А. С. Дубенский
В. С. Шешуков
С. М. Ляпунов
Т. Б. Баянова
П. А. Серов
author_sort N. B. Kuznetsov
title TIME CONSTRAINTS ON THE FORMATION OF THE KANDALAKSHA AND KERETSK GRABENS OF THE WHITE SEA PALEO-RIFT SYSTEM FROM NEW ISOTOPIC GEOCHRONOLOGICAL DATA
title_short TIME CONSTRAINTS ON THE FORMATION OF THE KANDALAKSHA AND KERETSK GRABENS OF THE WHITE SEA PALEO-RIFT SYSTEM FROM NEW ISOTOPIC GEOCHRONOLOGICAL DATA
title_full TIME CONSTRAINTS ON THE FORMATION OF THE KANDALAKSHA AND KERETSK GRABENS OF THE WHITE SEA PALEO-RIFT SYSTEM FROM NEW ISOTOPIC GEOCHRONOLOGICAL DATA
title_fullStr TIME CONSTRAINTS ON THE FORMATION OF THE KANDALAKSHA AND KERETSK GRABENS OF THE WHITE SEA PALEO-RIFT SYSTEM FROM NEW ISOTOPIC GEOCHRONOLOGICAL DATA
title_full_unstemmed TIME CONSTRAINTS ON THE FORMATION OF THE KANDALAKSHA AND KERETSK GRABENS OF THE WHITE SEA PALEO-RIFT SYSTEM FROM NEW ISOTOPIC GEOCHRONOLOGICAL DATA
title_sort time constraints on the formation of the kandalaksha and keretsk grabens of the white sea paleo-rift system from new isotopic geochronological data
publisher Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch
publishDate 2021
url https://www.gt-crust.ru/jour/article/view/1241
https://doi.org/10.5800/GT-2021-12-3-0540
long_lat ENVELOPE(32.417,32.417,67.133,67.133)
geographic White Sea
Kandalaksha
geographic_facet White Sea
Kandalaksha
genre Arctic
White Sea
Белого моря
genre_facet Arctic
White Sea
Белого моря
op_source Geodynamics & Tectonophysics; Том 12, № 3 (2021); 570-607
Геодинамика и тектонофизика; Том 12, № 3 (2021); 570-607
2078-502X
op_relation https://www.gt-crust.ru/jour/article/view/1241/568
Andreichev V.L., Soboleva A.A., Gehrels G., 2014. U-Pb Dating and Provenance of Detrital Zircons from the Upper Precambrian Deposits of North Timan. Stratigraphy and Geological Correlation 22 (2), 147–159. https://doi.org/10.1134/s0869593814020026.
Andreichev V.L., Soboleva A.A., Hourigan J.K., 2017. Results of U-Pb (LA-ICP-MS) Dating of Detrital Zircons from Terrigenous Sediments of the Upper Part of the Precambrian Basement of Northern Timan. Bulletin of Moscow Society of Naturalists. Geological Series 92 (1), 10–20 (in Russian) [Андреичев В.Л., Соболева А.А., Хоуриган Дж.К. Результаты U–Pb (LA-ICP-MS) датирования детритовых цирконов из терригенных отложений верхней части докембрийского фундамента Cеверного Tимана // Бюллетень МОИП. Отдел геологический. 2017. Т. 92. № 1. С. 10–20].
Andreichev V.L., Soboleva A.A., Khubanov V.B., Sobolev I.D., 2018. U-Pb (LA-ICP-MS) Age of Detrital Zircons from Meta-Sedimentary Rocks of the Upper Precambrian Section of Northern Timan. Bulletin of Moscow Society of Naturalists. Geological Series 93 (2), 14–26 (in Russian) [Андреичев В.Л., Соболева А.А., Хубанов В.Б., Соболев И.Д. U-Pb (LA-ICP-MS) возраст детритовых цирконов из метаосадочных пород основания верхнедокембрийского разреза Северного Тимана // Бюллетень МОИП. Отдел геологический. 2018. Т. 93. № 2. С. 14–26].
Aplonov S.V., Fedorov D.L. (Eds), 2006. Geodynamics and Possible Oil and Gas Potential of the Mezensk Sedimentary Basin. Nauka, Saint Petersburg, 319 p. (in Russian) [Геодинамика и возможная нефтегазоносность Мезенского осадочного бассейна / Ред. С.В. Аплонов, Д.Л. Федоров. СПб.: Наука, 2006. 319 с.].
Baluev A.S., 2006. Geodynamics of the Riphean Stage in the Evolution of the Northern Passive Margine of the East European Craton. Geotectonics 40 (3), 183–196. https://doi.org/10.1134/S0016852106030034.
Baluev A.S., Brusilovsky Yu.V., Ivanenko A.N., 2018а. The Crustal Structure of Onega-Kandalaksha Paleorift Identified by Complex Analysis of the Anomalous Magnetic Field of the White Sea. Geodynamics & Tectonophysics 9 (4), 1293–1312 (in Russian) [Балуев А.С., Брусиловский Ю.В., Иваненко А.Н. Структура земной коры Онежско-Кандалакшского палеорифта по данным комплексного анализа аномального магнитного поля акватории Белого моря // Геодинамика и тектонофизика. 2018. Т. 9. № 4. С. 1293–1312]. https://doi.org/10.5800/GT-2018-9-4-0396.
Baluev A.S., Kolodyazhnyi S.Yu., Terekhov E.N., Lebedev V.A., Serov P.A., 2018b. Problems of the Initiation Time and Tectonic Evolution of the Onega-Kandalaksha Paleorift in the Light of Isotope Geochronology Data. Proceedings of Higher Educational Establishments. Geology and Exploration 5, 5–11 (in Russian) [Балуев А.С., Колодяжный С.Ю., Терехов Е.Н., Лебедев В.А., Серов П.А. Проблемы времени заложения и тектонической эволюции Онежско-Кандалакшского палеорифта в свете данных изотопной геохронологии // Известия вузов. Геология и разведка. 2018. № 5. С. 5–11]. https://doi.org/10.31857/S0016-853X2019162-86.
Baluev A.S., Zhuravlev V.A., Terekhov E.N., Przhiyalgovskii E.S., 2012. Tectonics of the White Sea and Adjacent Areas. The Explanatory Notes to the Tectonic Map of the White Sea and Adjacent Areas, at a Scale of 1:500 000. Proceedings of GIN RAS. Iss. 597. GEOS, Moscow, 104 p. (in Russian) [Балуев А.С., Журавлев В.А., Терехов А.Н., Пржиялговский Е.С. Тектоника Белого моря и прилегающих территорий: Объяснительная записка к Тектонической карте Белого моря и прилегающих территорий масштаба 1:500 000 // Труды ГИН РАН. М.: ГЕОС, 2012. Вып. 597. 104 с.].
Berezin A.V., Skublov S.G., Bogomolov E.S., Travin V.V., Marin Y.B., 2012. New U-PB and Sm-Nd Ages and P-T Estimates for Eclogitization in the Fe-Rich Gabbro Dyke in Gridino Area (Belomorian Mobile Belt). Doklady Earth Sciences 444, 760–765. https://doi.org/10.1134/S1028334X12060207.
Bibikova E.V., Skiöld T., Bogdanova S.V., 1996. Age and Geodynamic Aspects of the Oldest Rocks in the Precambrian Belomorian Belt of the Baltic (Fennoscandian) Shield. In: T.S. Brewer (Ed.), Precambrian Crustal Evolution in the North Atlantic Region. Geological Society of London 112, p. 55–67. https://doi.org/10.1144/GSL.SP.1996.112.01.04.
Bingen B., Demaiffe D., van Breemen O., 1998. The 616 Ma Old Egersund Basaltic Dike Swarm, SW Norway, and Late Neoproterozoic Opening of the Iapetus Ocean. Journal of Geology 106 (5), 565–574. https://doi.org/10.1086/516042.
Bingen B., Nordgulen Ø., Viola G., 2008. A Four-Phase Model for the Sveconorwegian Orogeny, SW Scandinavia. Norwegian Journal of Geology 88, 43–72.
Bogdanov Y.B., Savvatenkov V.V., Ivanikov V.V., Frank-Kamenetsky D.A., 2003. Isotopic Age of Volcanic Rocks of the Riphean Salma Suite. In: Isotope Geochronology and Solution of Problems in Geodynamics and Ore Genesis. Proceedings of the II Russian Conference on Isotope Geochronology (November 25–27, 2003). Center for Information Culture, Saint Petersburg, p. 71–72 (in Russian) [Богданов Ю.Б., Савватенков В.В., Иваников В.В., Франк-Каменецкий Д.А. Изотопный возраст вулканитов салминской свиты рифея // Изотопная геохронология и решение проблем геодинамики и рудогенеза: Материалы II Российской конференции по изотопной геохронологии (25–27 ноября 2003 г.). СПб.: Центр информационной культуры, 2003. С. 71–72].
Bogdanova S.V., Bingen B., Gorbatschev R., Kheraskova T.N., Kozlov V.I., Puchkov V.N., Volozh Yu.A., 2008. The East European Craton (Baltica) before and during the Assembly of Rodinia. Precambrian Research 160 (1–2), 23–45. https://doi.org/10.1016/j.precamres.2007.04.024.
Bogdanova S.V., Pashkevich I.K., Gorbatchev R., Orlyuk M.I., 1996. Riphean Rifting and Major Palaeproterozoic Crustal Boundaries in the Basement of the East European Craton: Geology and Geophysics. Tectonophysics 268 (1–4), 1–21. https://doi.org/10.1016/S0040-1951(96)00232-6.
Bouvier A., Vervoort J.D., Patchett P.J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters 273 (1–2), 48–57. https://doi.org/10.1016/j.epsl.2008.06.010.
Bronguleev V.V. (Ed.), 1981. Sedimentary Cover Maps of the East European Platform (Upper Proterozoic). Scale 1:5000000. MSU Publishing House, Moscow, 10 sh. (in Russian) [Карты мощности осадочного чехла Восточно-Европейской платформы (верхний протерозой). Масштаб 1:5000000 / Ред. В.В. Бронгулеев. М.: Изд-во МГУ, 1981. 10 л.].
Cawood P.A., McCausland P.J.A., Dunning G.R., 2011. Opening Iapetus: Constraints from the Laurentian Margin in Newfoundland. Geological Society of America Bulletin 113 (4), 443–453. https://doi.org/10.1130/0016-7606(2001)113<0443:OICFTL>2.0.CO;2.
Chamov N.P., 2016. Structure and Development of the Central Russian-White Sea Province in Neoproterozoic. Proceedings of GIN RAS. Iss. 609. GEOS, Moscow, 238 p. (in Russian) [Чамов Н.П. Строение и развитие Среднерусско-Беломорской провинции в неопротерозое // Труды ГИН РАН. М.: ГЕОС, 2016. Вып. 609. 238 с.].
Condie K.C., 1993. Chemical Composition and Evolution of the Upper Continental Crust: Constrasting Results from Surface Samples and Shales. Chemical Geology 104 (1–4), 1–37. https://doi.org/10.1016/0009-2541(93)90140-E.
Condie K.C., 2011. Earth as an Evolving Planetary System. Elsevier, Amsterdam, 574 p. https://doi.org/10.1016/C2010-0-65818-4.
Condie K.C., Lee D., Farmer G.L., 2001. Tectonic Setting and Provenance of the Neoproterozoic Uinta Mountain and Big Cootonwood Groups, Northern Utah: Constrains from Geochemistry, Nd Isotopes, and Detrital Modes. Sedimentary Geology 141–142, 443–464. https://doi.org/10.1016/S0037-0738(01)00086-0.
Condie K.C., O’Neill C., Aster R.C., 2009. Evidence and Implications for a Widespread Magmatic Shutdown for 250 My on Earth. Earth and Planetary Science Letters 282 (1–4), 294–298. https://doi.org/10.1016/j.epsl.2009.03.033.
Cox R., Lowe D.R., Cullers R.L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the South-Western United States. Geochimica et Cosmochimica Acta 59 (14), 2919–2940. https://doi.org/10.1016/0016-7037(95)00185-9.
Daly J.S., Balagansky V.V., Timmerman M.J., Whitehouse M.J., 2006. The Lapland-Kola Orogen: Palaeoproterozoic Collision and Accretion of the Northern Fennoscandian Lithosphere. Geological Society London Memoirs 32, 579–598. https://doi.org/10.1144/GSL.MEM.2006.032.01.35.
Degtyarev K.E., Tretyakov A.A., Kuznetsov N.B., Tolmacheva T.Y., Belousova E.A., Romanyuk T.V., 2018. Structure, Age, and Settings of Formation of Ordovician Complexes of the Northwestern Frame of the Kokchetau Massif, Northern Kazakhstan. Stratigraphy and Geological Correlation 26, 514–533. https://doi.org/10.1134/S086959381803005X.
Dokukina K.A., Bayanova T.B., Kaulina T.V., Travin A.V., Mints M.V., Konilov A.N., Serov P.A., 2012. The Belomorian Eclogite Province: Sequence of Events and Age of the Igneous and Metamorphic Rocks of the Gridino Association. Russian Geology and Geophysics 53 (10), 1023–1054. https://doi.org/10.1016/j.rgg.2012.08.006.
Dokukina K., Mints M., 2019. Subduction of the Mesoarchaean Spreading Ridge and Related Metamorphism, Magmatism and Deformation by the Example of the Gridino Eclogitized Mafic Dyke Swarm, the Belomorian Eclogite Province, Eastern Fennoscandian Shield. Journal of Geodynamics 123, 1–37. https://doi.org/10.1016/j.jog.2018.11.003.
Elhlou S., Belousova E., Griffin W.L., Pearson N.J., O’Reily S.Y., 2006. Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation. Geochmica et Cosmochimica Acta 70 (18), A158. http://dx.doi.org/10.1016/j.gca.2006.06.1383.
Ernst R.E., Hamilton M.A., Soderlund U., Hanes J.A., Gladkochub D.P., Okrugin A.V., Kolotilina T., Mekhonoshin A.S. et al., 2016. Long-Lived Connection between Southern Siberia and Northern Laurentia in the Proterozoic. Nature Geoscience 9, 464–469. https://doi.org/10.1038/ngeo2700.
Ershova V.B., Ivleva A.S., Podkovyrov V.N., Khudoley A.K., Fedorov P.V., Stockli D., Anfinson O., Maslov A.V., Khubanov V., 2019. Detrital Zircon Record of the Mesoproterozoic to Lower Cambrian Sequences of NW Russia: Implications for the Paleogeography of the Baltic Interior. GFF 141 (4), 279–288. https://doi.org/10.1080/11035897.2019.1625073.
Evans D.A.D., 2009. The Palaeomagnetically Viable, Long-Lived and All-Inclusive Rodinia Supercontinent Reconstruction. In: J.B. Murphy, J.D. Keppie, A.J. Hynes (Eds), Ancient Orogens and Modern Analogues. Geological Society of London Special Publications 327, p. 371–404. https://doi.org/10.1144/SP327.16.
Evans D.A.D., Mitchell R.N., 2011. Assembly and Breakup of the Core of Paleoproterozoic–Mesoproterozoic Supercontinent Nuna. Geology 39 (5), 443–446. https://doi.org/10.1130/G31654.1.
Glebovitskii V.A. (Ed.), 2005. The Early Precambrian of the Baltic Shield. Nauka, Saint Petersburg, 711 p. (in Russian) [Ранний докембрий Балтийского щита / Ред. В.А. Глебовицкий. СПб.: Наука, 2005. 711 с.].
Glorie S., Zhimulev F.I., Buslov M.M., Andersen T., Plavsa D., Izmer A., Vanhaecke F., De Grav J., 2015. Formation of the Kokchetau Subduction–Collision Zone (Northern Kazakhstan): Insights from Zircon. Gondwana Research 27 (1), 424–438. https://doi.org/10.1016/j.gr.2013.10.012.
Goldstein S.J., Jacobsen S.B., 1988. Nd and Sr Isotopic Systematics of River Water Suspended Material: Implications for Crustal Evolution. Earth and Planetary Science Letters 87 (3), 249–265. https://doi.org/10.1016/0012-821X(88)90013-1.
Griffin W.L., Powell W.J., Pearson N.J., O’Reilly S.Y., 2008. GLITTER: Data Reduction Software for Laser Ablation ICPMS. In: P.J. Sylvester (Ed.), Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series. Vol. 40. Vancouver, p. 308–311.
Harrison T.M., Watson E.B., Aikman A.B., 2007. Temperature Spectra of Zircon Crystallization in Plutonic Rocks. Geology 35 (7), 635–638. https://doi.org/10.1130/G23505A.1.
Herron M.M., 1988. Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data. Journal of Sedimentary Research 58 (5), 820–829. https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D.
Horstwood M.S.A., Kosler J., Gehrels G., Jackson S.E., McLean N.M., Paton Ch., Pearson N.J., Sircombe K. et al., 2016. Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting. Geostandards and Geoanalytical Research 40 (3), 311–332. https://doi.org/10.1111/j.1751-908X.2016.00379.x.
Hoskin P.W.O., Schaltegger U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry 53 (1), 27–62. https://doi.org/10.2113/0530027.
Jackson S.E., Pearson N.J., Griffin W.L., Belousova E., 2004. The Application of Laser Ablation Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology. Chemical Geology 211 (1–2), 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017.
Kaczmarek M.A., Müntener O., Rubatto D., 2008. Trace Element Chemistry and U–Pb Dating of Zircons from Oceanic Gabbros and Their Relationship with Whole Rock Composition (Lanzo, Italian Alps). Contributions to Mineralogy and Petrology 155, 295–312. https://doi.org/10.1007/s00410-007-0243-3.
Kazanin G.S., Zhuravlev V.A., Pavlov S.P., 2006. Structure of the Sedimentary Cover and Petroleum Capacities of the White Sea. Drilling and Oil 2, 26–28 (in Russian) [Казанин Г.С., Журавлев В.А., Павлов С.П. Структура осадочного чехла и перспективы нефтегазоносности Белого моря // Бурение и нефть. 2006. № 2. С. 26–28].
Kharitonov L.Ya. (Ed.), 1958. Geology of the USSR. Murmansk Region. Geological Description. Vol. XXVII. Part 1. Moscow, Gosgeoltekhizdat, 716 p. (in Russian) [Геология СССР. Мурманская область: Геологическое описание / Ред. Л.Я. Харитонов. М.: Госгеолтехиздат, 1958. Т. XXVII. Ч. 1. 716 с.].
Kheraskova T.N., Sapozhnikov R.B., Volozh Yu.A., Antipov M.P., 2006. Geodynamics and Evolution of the Northern East European Platform in the Late Precambrian as Inferred from Regional Seismic Profiling. Geotectonics 6, 434–449. https://doi.org/10.1134/S0016852106060021.
Kirkland C.L., Bingen B., Whitehouse M.J., Beyer E., Griffin W.L., 2011. Neoproterozoic Palaeogeography in the North Atlantic Region: Inferences from the Akkajaure and Seve Nappes of the Scandinavian Caledonides. Precambrian Research 186 (1–4), 127–146. https://doi.org/10.1016/j.precamres.2011.01.010.
Kirkland C.L., Daly J.S., Chew D.M., Page L.M., 2008. The Finnmarkian Orogeny Revisited: An Isotopic Investigation in Eastern Finnmark, Arctic Norway. Tectonophysics 460, 158–177. https://doi.org/10.1016/j.tecto.2008.08.001.
Kirkland C.L., Smithies R.H., Taylor R.J.M., Evans N., McDonald B., 2015. Zircon Th/U Ratios in Magmatic Environs. Lithos 212–215, 397–414. https://doi.org/10.1016/j.lithos.2014.11.021.
op_rights Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.5800/GT-2021-12-3-0540
https://doi.org/10.1134/s0869593814020026
https://doi.org/10.1134/S0016852106030034
https://doi.org/10.31857/S0016-853X2019162-86
https://doi.org/10.1134/S1028334X12060207
https://doi.org/10.1144/GSL.SP.
container_title Geodynamics & Tectonophysics
container_volume 12
container_issue 3
container_start_page 570
op_container_end_page 607
_version_ 1766302699932876800
spelling ftjgat:oai:oai.gtcrust.elpub.ru:article/1241 2023-05-15T14:28:32+02:00 TIME CONSTRAINTS ON THE FORMATION OF THE KANDALAKSHA AND KERETSK GRABENS OF THE WHITE SEA PALEO-RIFT SYSTEM FROM NEW ISOTOPIC GEOCHRONOLOGICAL DATA О ВРЕМЕНИ ФОРМИРОВАНИЯ КАНДАЛАКШСКОГО И КЕРЕЦКОГО ГРАБЕНОВ ПАЛЕОРИФТОВОЙ СИСТЕМЫ БЕЛОГО МОРЯ В СВЕТЕ НОВЫХ ДАННЫХ ИЗОТОПНОЙ ГЕОХРОНОЛОГИИ N. B. Kuznetsov A. S. Baluev E. N. Terekhov S. Yu. Kolodyazhnyi E. S. Przhiyalgovskii T. V. Romanyuk A. S. Dubensky V. S. Sheshukov S. M. Lyapunov T. B. Bayanova P. A. Serov Н. Б. Кузнецов А. С. Балуев Е. Н. Терехов С. Ю. Колодяжный Е. С. Пржиялговский Т. В. Романюк А. С. Дубенский В. С. Шешуков С. М. Ляпунов Т. Б. Баянова П. А. Серов The study was budgeted by the Geological Institute RAS (Laboratory budget) and supported by the Russian Foundation for Basic Research (Project 18-05-00485). The geochronological data were consolidated and systematized with the financial support of the RF Ministry of Education and Science (Megagrant 075-15-2019-1883 – Orogenesis: Formation and Growth of Continents and Supercontinents). Работа выполнена в рамках бюджетной темы лаборатории ГИН РАН при поддержке РФФИ, проект № 18-05-00485. Сбор и систематизация геохронологических данных выполнены при финансовой поддержке МОН РФ (мегагрант 075-15-2019-1883, «Орогенез: образование и рост континентов и суперконтинентов»). 2021-09-17 application/pdf https://www.gt-crust.ru/jour/article/view/1241 https://doi.org/10.5800/GT-2021-12-3-0540 rus rus Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch https://www.gt-crust.ru/jour/article/view/1241/568 Andreichev V.L., Soboleva A.A., Gehrels G., 2014. U-Pb Dating and Provenance of Detrital Zircons from the Upper Precambrian Deposits of North Timan. Stratigraphy and Geological Correlation 22 (2), 147–159. https://doi.org/10.1134/s0869593814020026. Andreichev V.L., Soboleva A.A., Hourigan J.K., 2017. Results of U-Pb (LA-ICP-MS) Dating of Detrital Zircons from Terrigenous Sediments of the Upper Part of the Precambrian Basement of Northern Timan. Bulletin of Moscow Society of Naturalists. Geological Series 92 (1), 10–20 (in Russian) [Андреичев В.Л., Соболева А.А., Хоуриган Дж.К. Результаты U–Pb (LA-ICP-MS) датирования детритовых цирконов из терригенных отложений верхней части докембрийского фундамента Cеверного Tимана // Бюллетень МОИП. Отдел геологический. 2017. Т. 92. № 1. С. 10–20]. Andreichev V.L., Soboleva A.A., Khubanov V.B., Sobolev I.D., 2018. U-Pb (LA-ICP-MS) Age of Detrital Zircons from Meta-Sedimentary Rocks of the Upper Precambrian Section of Northern Timan. Bulletin of Moscow Society of Naturalists. Geological Series 93 (2), 14–26 (in Russian) [Андреичев В.Л., Соболева А.А., Хубанов В.Б., Соболев И.Д. U-Pb (LA-ICP-MS) возраст детритовых цирконов из метаосадочных пород основания верхнедокембрийского разреза Северного Тимана // Бюллетень МОИП. Отдел геологический. 2018. Т. 93. № 2. С. 14–26]. Aplonov S.V., Fedorov D.L. (Eds), 2006. Geodynamics and Possible Oil and Gas Potential of the Mezensk Sedimentary Basin. Nauka, Saint Petersburg, 319 p. (in Russian) [Геодинамика и возможная нефтегазоносность Мезенского осадочного бассейна / Ред. С.В. Аплонов, Д.Л. Федоров. СПб.: Наука, 2006. 319 с.]. Baluev A.S., 2006. Geodynamics of the Riphean Stage in the Evolution of the Northern Passive Margine of the East European Craton. Geotectonics 40 (3), 183–196. https://doi.org/10.1134/S0016852106030034. Baluev A.S., Brusilovsky Yu.V., Ivanenko A.N., 2018а. The Crustal Structure of Onega-Kandalaksha Paleorift Identified by Complex Analysis of the Anomalous Magnetic Field of the White Sea. Geodynamics & Tectonophysics 9 (4), 1293–1312 (in Russian) [Балуев А.С., Брусиловский Ю.В., Иваненко А.Н. Структура земной коры Онежско-Кандалакшского палеорифта по данным комплексного анализа аномального магнитного поля акватории Белого моря // Геодинамика и тектонофизика. 2018. Т. 9. № 4. С. 1293–1312]. https://doi.org/10.5800/GT-2018-9-4-0396. Baluev A.S., Kolodyazhnyi S.Yu., Terekhov E.N., Lebedev V.A., Serov P.A., 2018b. Problems of the Initiation Time and Tectonic Evolution of the Onega-Kandalaksha Paleorift in the Light of Isotope Geochronology Data. Proceedings of Higher Educational Establishments. Geology and Exploration 5, 5–11 (in Russian) [Балуев А.С., Колодяжный С.Ю., Терехов Е.Н., Лебедев В.А., Серов П.А. Проблемы времени заложения и тектонической эволюции Онежско-Кандалакшского палеорифта в свете данных изотопной геохронологии // Известия вузов. Геология и разведка. 2018. № 5. С. 5–11]. https://doi.org/10.31857/S0016-853X2019162-86. Baluev A.S., Zhuravlev V.A., Terekhov E.N., Przhiyalgovskii E.S., 2012. Tectonics of the White Sea and Adjacent Areas. The Explanatory Notes to the Tectonic Map of the White Sea and Adjacent Areas, at a Scale of 1:500 000. Proceedings of GIN RAS. Iss. 597. GEOS, Moscow, 104 p. (in Russian) [Балуев А.С., Журавлев В.А., Терехов А.Н., Пржиялговский Е.С. Тектоника Белого моря и прилегающих территорий: Объяснительная записка к Тектонической карте Белого моря и прилегающих территорий масштаба 1:500 000 // Труды ГИН РАН. М.: ГЕОС, 2012. Вып. 597. 104 с.]. Berezin A.V., Skublov S.G., Bogomolov E.S., Travin V.V., Marin Y.B., 2012. New U-PB and Sm-Nd Ages and P-T Estimates for Eclogitization in the Fe-Rich Gabbro Dyke in Gridino Area (Belomorian Mobile Belt). Doklady Earth Sciences 444, 760–765. https://doi.org/10.1134/S1028334X12060207. Bibikova E.V., Skiöld T., Bogdanova S.V., 1996. Age and Geodynamic Aspects of the Oldest Rocks in the Precambrian Belomorian Belt of the Baltic (Fennoscandian) Shield. In: T.S. Brewer (Ed.), Precambrian Crustal Evolution in the North Atlantic Region. Geological Society of London 112, p. 55–67. https://doi.org/10.1144/GSL.SP.1996.112.01.04. Bingen B., Demaiffe D., van Breemen O., 1998. The 616 Ma Old Egersund Basaltic Dike Swarm, SW Norway, and Late Neoproterozoic Opening of the Iapetus Ocean. Journal of Geology 106 (5), 565–574. https://doi.org/10.1086/516042. Bingen B., Nordgulen Ø., Viola G., 2008. A Four-Phase Model for the Sveconorwegian Orogeny, SW Scandinavia. Norwegian Journal of Geology 88, 43–72. Bogdanov Y.B., Savvatenkov V.V., Ivanikov V.V., Frank-Kamenetsky D.A., 2003. Isotopic Age of Volcanic Rocks of the Riphean Salma Suite. In: Isotope Geochronology and Solution of Problems in Geodynamics and Ore Genesis. Proceedings of the II Russian Conference on Isotope Geochronology (November 25–27, 2003). Center for Information Culture, Saint Petersburg, p. 71–72 (in Russian) [Богданов Ю.Б., Савватенков В.В., Иваников В.В., Франк-Каменецкий Д.А. Изотопный возраст вулканитов салминской свиты рифея // Изотопная геохронология и решение проблем геодинамики и рудогенеза: Материалы II Российской конференции по изотопной геохронологии (25–27 ноября 2003 г.). СПб.: Центр информационной культуры, 2003. С. 71–72]. Bogdanova S.V., Bingen B., Gorbatschev R., Kheraskova T.N., Kozlov V.I., Puchkov V.N., Volozh Yu.A., 2008. The East European Craton (Baltica) before and during the Assembly of Rodinia. Precambrian Research 160 (1–2), 23–45. https://doi.org/10.1016/j.precamres.2007.04.024. Bogdanova S.V., Pashkevich I.K., Gorbatchev R., Orlyuk M.I., 1996. Riphean Rifting and Major Palaeproterozoic Crustal Boundaries in the Basement of the East European Craton: Geology and Geophysics. Tectonophysics 268 (1–4), 1–21. https://doi.org/10.1016/S0040-1951(96)00232-6. Bouvier A., Vervoort J.D., Patchett P.J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters 273 (1–2), 48–57. https://doi.org/10.1016/j.epsl.2008.06.010. Bronguleev V.V. (Ed.), 1981. Sedimentary Cover Maps of the East European Platform (Upper Proterozoic). Scale 1:5000000. MSU Publishing House, Moscow, 10 sh. (in Russian) [Карты мощности осадочного чехла Восточно-Европейской платформы (верхний протерозой). Масштаб 1:5000000 / Ред. В.В. Бронгулеев. М.: Изд-во МГУ, 1981. 10 л.]. Cawood P.A., McCausland P.J.A., Dunning G.R., 2011. Opening Iapetus: Constraints from the Laurentian Margin in Newfoundland. Geological Society of America Bulletin 113 (4), 443–453. https://doi.org/10.1130/0016-7606(2001)113<0443:OICFTL>2.0.CO;2. Chamov N.P., 2016. Structure and Development of the Central Russian-White Sea Province in Neoproterozoic. Proceedings of GIN RAS. Iss. 609. GEOS, Moscow, 238 p. (in Russian) [Чамов Н.П. Строение и развитие Среднерусско-Беломорской провинции в неопротерозое // Труды ГИН РАН. М.: ГЕОС, 2016. Вып. 609. 238 с.]. Condie K.C., 1993. Chemical Composition and Evolution of the Upper Continental Crust: Constrasting Results from Surface Samples and Shales. Chemical Geology 104 (1–4), 1–37. https://doi.org/10.1016/0009-2541(93)90140-E. Condie K.C., 2011. Earth as an Evolving Planetary System. Elsevier, Amsterdam, 574 p. https://doi.org/10.1016/C2010-0-65818-4. Condie K.C., Lee D., Farmer G.L., 2001. Tectonic Setting and Provenance of the Neoproterozoic Uinta Mountain and Big Cootonwood Groups, Northern Utah: Constrains from Geochemistry, Nd Isotopes, and Detrital Modes. Sedimentary Geology 141–142, 443–464. https://doi.org/10.1016/S0037-0738(01)00086-0. Condie K.C., O’Neill C., Aster R.C., 2009. Evidence and Implications for a Widespread Magmatic Shutdown for 250 My on Earth. Earth and Planetary Science Letters 282 (1–4), 294–298. https://doi.org/10.1016/j.epsl.2009.03.033. Cox R., Lowe D.R., Cullers R.L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the South-Western United States. Geochimica et Cosmochimica Acta 59 (14), 2919–2940. https://doi.org/10.1016/0016-7037(95)00185-9. Daly J.S., Balagansky V.V., Timmerman M.J., Whitehouse M.J., 2006. The Lapland-Kola Orogen: Palaeoproterozoic Collision and Accretion of the Northern Fennoscandian Lithosphere. Geological Society London Memoirs 32, 579–598. https://doi.org/10.1144/GSL.MEM.2006.032.01.35. Degtyarev K.E., Tretyakov A.A., Kuznetsov N.B., Tolmacheva T.Y., Belousova E.A., Romanyuk T.V., 2018. Structure, Age, and Settings of Formation of Ordovician Complexes of the Northwestern Frame of the Kokchetau Massif, Northern Kazakhstan. Stratigraphy and Geological Correlation 26, 514–533. https://doi.org/10.1134/S086959381803005X. Dokukina K.A., Bayanova T.B., Kaulina T.V., Travin A.V., Mints M.V., Konilov A.N., Serov P.A., 2012. The Belomorian Eclogite Province: Sequence of Events and Age of the Igneous and Metamorphic Rocks of the Gridino Association. Russian Geology and Geophysics 53 (10), 1023–1054. https://doi.org/10.1016/j.rgg.2012.08.006. Dokukina K., Mints M., 2019. Subduction of the Mesoarchaean Spreading Ridge and Related Metamorphism, Magmatism and Deformation by the Example of the Gridino Eclogitized Mafic Dyke Swarm, the Belomorian Eclogite Province, Eastern Fennoscandian Shield. Journal of Geodynamics 123, 1–37. https://doi.org/10.1016/j.jog.2018.11.003. Elhlou S., Belousova E., Griffin W.L., Pearson N.J., O’Reily S.Y., 2006. Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation. Geochmica et Cosmochimica Acta 70 (18), A158. http://dx.doi.org/10.1016/j.gca.2006.06.1383. Ernst R.E., Hamilton M.A., Soderlund U., Hanes J.A., Gladkochub D.P., Okrugin A.V., Kolotilina T., Mekhonoshin A.S. et al., 2016. Long-Lived Connection between Southern Siberia and Northern Laurentia in the Proterozoic. Nature Geoscience 9, 464–469. https://doi.org/10.1038/ngeo2700. Ershova V.B., Ivleva A.S., Podkovyrov V.N., Khudoley A.K., Fedorov P.V., Stockli D., Anfinson O., Maslov A.V., Khubanov V., 2019. Detrital Zircon Record of the Mesoproterozoic to Lower Cambrian Sequences of NW Russia: Implications for the Paleogeography of the Baltic Interior. GFF 141 (4), 279–288. https://doi.org/10.1080/11035897.2019.1625073. Evans D.A.D., 2009. The Palaeomagnetically Viable, Long-Lived and All-Inclusive Rodinia Supercontinent Reconstruction. In: J.B. Murphy, J.D. Keppie, A.J. Hynes (Eds), Ancient Orogens and Modern Analogues. Geological Society of London Special Publications 327, p. 371–404. https://doi.org/10.1144/SP327.16. Evans D.A.D., Mitchell R.N., 2011. Assembly and Breakup of the Core of Paleoproterozoic–Mesoproterozoic Supercontinent Nuna. Geology 39 (5), 443–446. https://doi.org/10.1130/G31654.1. Glebovitskii V.A. (Ed.), 2005. The Early Precambrian of the Baltic Shield. Nauka, Saint Petersburg, 711 p. (in Russian) [Ранний докембрий Балтийского щита / Ред. В.А. Глебовицкий. СПб.: Наука, 2005. 711 с.]. Glorie S., Zhimulev F.I., Buslov M.M., Andersen T., Plavsa D., Izmer A., Vanhaecke F., De Grav J., 2015. Formation of the Kokchetau Subduction–Collision Zone (Northern Kazakhstan): Insights from Zircon. Gondwana Research 27 (1), 424–438. https://doi.org/10.1016/j.gr.2013.10.012. Goldstein S.J., Jacobsen S.B., 1988. Nd and Sr Isotopic Systematics of River Water Suspended Material: Implications for Crustal Evolution. Earth and Planetary Science Letters 87 (3), 249–265. https://doi.org/10.1016/0012-821X(88)90013-1. Griffin W.L., Powell W.J., Pearson N.J., O’Reilly S.Y., 2008. GLITTER: Data Reduction Software for Laser Ablation ICPMS. In: P.J. Sylvester (Ed.), Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series. Vol. 40. Vancouver, p. 308–311. Harrison T.M., Watson E.B., Aikman A.B., 2007. Temperature Spectra of Zircon Crystallization in Plutonic Rocks. Geology 35 (7), 635–638. https://doi.org/10.1130/G23505A.1. Herron M.M., 1988. Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data. Journal of Sedimentary Research 58 (5), 820–829. https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D. Horstwood M.S.A., Kosler J., Gehrels G., Jackson S.E., McLean N.M., Paton Ch., Pearson N.J., Sircombe K. et al., 2016. Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting. Geostandards and Geoanalytical Research 40 (3), 311–332. https://doi.org/10.1111/j.1751-908X.2016.00379.x. Hoskin P.W.O., Schaltegger U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry 53 (1), 27–62. https://doi.org/10.2113/0530027. Jackson S.E., Pearson N.J., Griffin W.L., Belousova E., 2004. The Application of Laser Ablation Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology. Chemical Geology 211 (1–2), 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017. Kaczmarek M.A., Müntener O., Rubatto D., 2008. Trace Element Chemistry and U–Pb Dating of Zircons from Oceanic Gabbros and Their Relationship with Whole Rock Composition (Lanzo, Italian Alps). Contributions to Mineralogy and Petrology 155, 295–312. https://doi.org/10.1007/s00410-007-0243-3. Kazanin G.S., Zhuravlev V.A., Pavlov S.P., 2006. Structure of the Sedimentary Cover and Petroleum Capacities of the White Sea. Drilling and Oil 2, 26–28 (in Russian) [Казанин Г.С., Журавлев В.А., Павлов С.П. Структура осадочного чехла и перспективы нефтегазоносности Белого моря // Бурение и нефть. 2006. № 2. С. 26–28]. Kharitonov L.Ya. (Ed.), 1958. Geology of the USSR. Murmansk Region. Geological Description. Vol. XXVII. Part 1. Moscow, Gosgeoltekhizdat, 716 p. (in Russian) [Геология СССР. Мурманская область: Геологическое описание / Ред. Л.Я. Харитонов. М.: Госгеолтехиздат, 1958. Т. XXVII. Ч. 1. 716 с.]. Kheraskova T.N., Sapozhnikov R.B., Volozh Yu.A., Antipov M.P., 2006. Geodynamics and Evolution of the Northern East European Platform in the Late Precambrian as Inferred from Regional Seismic Profiling. Geotectonics 6, 434–449. https://doi.org/10.1134/S0016852106060021. Kirkland C.L., Bingen B., Whitehouse M.J., Beyer E., Griffin W.L., 2011. Neoproterozoic Palaeogeography in the North Atlantic Region: Inferences from the Akkajaure and Seve Nappes of the Scandinavian Caledonides. Precambrian Research 186 (1–4), 127–146. https://doi.org/10.1016/j.precamres.2011.01.010. Kirkland C.L., Daly J.S., Chew D.M., Page L.M., 2008. The Finnmarkian Orogeny Revisited: An Isotopic Investigation in Eastern Finnmark, Arctic Norway. Tectonophysics 460, 158–177. https://doi.org/10.1016/j.tecto.2008.08.001. Kirkland C.L., Smithies R.H., Taylor R.J.M., Evans N., McDonald B., 2015. Zircon Th/U Ratios in Magmatic Environs. Lithos 212–215, 397–414. https://doi.org/10.1016/j.lithos.2014.11.021. Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Geodynamics & Tectonophysics; Том 12, № 3 (2021); 570-607 Геодинамика и тектонофизика; Том 12, № 3 (2021); 570-607 2078-502X U–Pb датирование White Sea rift system (WSRS) Keretsk and Kandalaksha grabens Tersk formation detrital zircon grains U-Pb dating рифтовая система Белого моря Кандалакшский и Керецкий грабены терская свита зерна детритового циркона info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2021 ftjgat https://doi.org/10.5800/GT-2021-12-3-0540 https://doi.org/10.1134/s0869593814020026 https://doi.org/10.1134/S0016852106030034 https://doi.org/10.31857/S0016-853X2019162-86 https://doi.org/10.1134/S1028334X12060207 https://doi.org/10.1144/GSL.SP. 2022-07-19T15:36:33Z Initially, the age and stratigraphic position of the Tersk formation were determined with respect to the fact that this formation overlaps the Early Proterozoic granitoids. Its top was marked by the rocks penetrated by the Late Devonian alkaline intrusions, including explosion pipes.This article presents the U-Pb isotopic dating of detrital zircon grains (dZr) from sandstones of the Tersk formation. It describes the geochemical compositions of the rocks and the Sm-Nd study results. In our study, the weighted average age of four youngest dZr grains from the sandstones of the Tersk formation is 1145±20 Ma, which suggests that the rocks above the studied rock layer (see the Tersk formation cross-section) are is not older than the end of the Middle Riphean. The U-Pb isotopic ages of dZr grains (provenance signals) from the sandstones of the Tersk formation were compared to the ages of other Upper Precambrian clastic strata in the northeastern East European platform (EEP) and adjacent areas. Our comparative analysis shows that these rocks significantly differ in age. This conclusion is in good agreement with the idea that at the end of the Middle and during the Late Riphean, several small (mainly closed) basins separated by uplifts dominated in the paleogeographic setting of the area wherein the White Sea rift system (WSRS) formed and developed. Temporal connections of these basins with the ocean were possible. Such paleogeographic setting does not favour the development of large rivers; this is why the grabens are mainly filled with local rock materials. The Keretsk and Kandalaksha grabens (WSRS) are filled with marine sediments eroded from the grabens walls. The local sediment sources include eclogite complexes (~1.9 Ga), which basic magmatism is dated at ~2.4–2.5 and ~2.7–2.9 Ga. Any potential primary sources for dZr grains are lacking in the area near the Keretsk graben. We suggest that such grains occurred due to recycling of the secondary sources of zircon, i.e. originated from ancient local sedimentary ... Article in Journal/Newspaper Arctic White Sea Белого моря Geodynamics & Tectonophysics (E-Journal) White Sea Kandalaksha ENVELOPE(32.417,32.417,67.133,67.133) Geodynamics & Tectonophysics 12 3 570 607