Zr-Th-U MINERALS IN HIGH-MG DIORITE OF THE CHELYABINSK MASSIF (SOUTH URALS) – EVIDENCE FOR CRUST–MANTLE INTERACTION

Zr-Th-U minerals, namely baddeleyite, zircon and U-Th-oxide, were found in high-Mg diorite from the Late Devonian – Early Carboniferous synplutonic dyke in granodiorites of the Chelyabinsk massif, South Urals. Micron-sized minerals were investigated by electron microscopy and cathodoluminescence spe...

Full description

Bibliographic Details
Published in:Nature Communications
Main Authors: T. A. Osipova, G. A. Kallistov, D. A. Zamyatin, V. A. Bulatov, Т. А. Осипова, Г. А. Каллистов, Д. А. Замятин, В. А. Булатов
Other Authors: The study was carried out under the state assignment of the Institute of Geology and Geochemistry UB RAS (project АААА-А18-118052590029-6 and АААА-А19-119071090011-6)., Работа выполнена в рамках государственного задания ИГГ УрО РАН (№ гос. рег. тем АААА-А18-118052590029-6 и АААА-А19-119071090011-6).
Format: Article in Journal/Newspaper
Language:Russian
Published: Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch 2021
Subjects:
Online Access:https://www.gt-crust.ru/jour/article/view/1215
https://doi.org/10.5800/GT-2021-12-2-0528
id ftjgat:oai:oai.gtcrust.elpub.ru:article/1215
record_format openpolar
institution Open Polar
collection Geodynamics & Tectonophysics (E-Journal)
op_collection_id ftjgat
language Russian
topic электронно-зондовый микроанализ
baddeleyite
uranotorianite
zircon
petrogenesis
crust–mantle interaction
South Urals
cathodoluminescence
electron probe microanalysis
бадделеит
ураноторианит
циркон
петрогенезис
мантийно-коровое взаимодействие
Южный Урал
катодолюминесценция
spellingShingle электронно-зондовый микроанализ
baddeleyite
uranotorianite
zircon
petrogenesis
crust–mantle interaction
South Urals
cathodoluminescence
electron probe microanalysis
бадделеит
ураноторианит
циркон
петрогенезис
мантийно-коровое взаимодействие
Южный Урал
катодолюминесценция
T. A. Osipova
G. A. Kallistov
D. A. Zamyatin
V. A. Bulatov
Т. А. Осипова
Г. А. Каллистов
Д. А. Замятин
В. А. Булатов
Zr-Th-U MINERALS IN HIGH-MG DIORITE OF THE CHELYABINSK MASSIF (SOUTH URALS) – EVIDENCE FOR CRUST–MANTLE INTERACTION
topic_facet электронно-зондовый микроанализ
baddeleyite
uranotorianite
zircon
petrogenesis
crust–mantle interaction
South Urals
cathodoluminescence
electron probe microanalysis
бадделеит
ураноторианит
циркон
петрогенезис
мантийно-коровое взаимодействие
Южный Урал
катодолюминесценция
description Zr-Th-U minerals, namely baddeleyite, zircon and U-Th-oxide, were found in high-Mg diorite from the Late Devonian – Early Carboniferous synplutonic dyke in granodiorites of the Chelyabinsk massif, South Urals. Micron-sized minerals were investigated by electron microscopy and cathodoluminescence spectroscopy. Their chemical compositions were determined by electron probe microanalysis that was optimized to ensure more precise measurements of the composition of minerals. Baddeleyite grains are found as inclusions in amphibole crystals and reside in intergranular areas. The former retain their composition and show no traces of corrosion or substitution. In the intergranular areas, baddeleyite grains were replaced by polycrystalline zircon due to the reaction with an acid melt, and the U-Th-oxide precipitated inside baddeleyite simultaneously, which suggests the restite origin of baddeleyite. The main features of the baddeleyite composition are extremely high concentrations of ThO2 and UO2 (to 0.03 wt. % and 1.0 wt. %, respectively), which may be due to the metasomatic interaction between the mantle peridotite and the crustal or carbonatite fluid or melt. В высокомагнезиальном диорите, слагающем синплутоническую дайку позднедевонско-раннекаменноугольного возраста в гранодиоритах Челябинского гранитоидного массива на Южном Урале, выявлена ассоциация Zr-Th-U минералов, представленная бадделеитом, ураноторианитом и цирконом. Минералы микронного размера исследовались методом электронной микроскопии и катодолюминесценции, а химический состав определялся методом электронно-зондового микроанализа (ЭЗМА), который был оптимизирован для измерения состава минералов с высокой локальностью. Бадделеит присутствует в виде включений субидиоморфных кристаллов в амфиболе и в межзерновом пространстве. Заключенный в амфиболе бадделеит сохраняет свой состав и не подвергается коррозии или замещению. В межзерновом пространстве в результате реакции с кремнекислым расплавом бадделеит замещается полизернистым цирконом с одновременным ...
author2 The study was carried out under the state assignment of the Institute of Geology and Geochemistry UB RAS (project АААА-А18-118052590029-6 and АААА-А19-119071090011-6).
Работа выполнена в рамках государственного задания ИГГ УрО РАН (№ гос. рег. тем АААА-А18-118052590029-6 и АААА-А19-119071090011-6).
format Article in Journal/Newspaper
author T. A. Osipova
G. A. Kallistov
D. A. Zamyatin
V. A. Bulatov
Т. А. Осипова
Г. А. Каллистов
Д. А. Замятин
В. А. Булатов
author_facet T. A. Osipova
G. A. Kallistov
D. A. Zamyatin
V. A. Bulatov
Т. А. Осипова
Г. А. Каллистов
Д. А. Замятин
В. А. Булатов
author_sort T. A. Osipova
title Zr-Th-U MINERALS IN HIGH-MG DIORITE OF THE CHELYABINSK MASSIF (SOUTH URALS) – EVIDENCE FOR CRUST–MANTLE INTERACTION
title_short Zr-Th-U MINERALS IN HIGH-MG DIORITE OF THE CHELYABINSK MASSIF (SOUTH URALS) – EVIDENCE FOR CRUST–MANTLE INTERACTION
title_full Zr-Th-U MINERALS IN HIGH-MG DIORITE OF THE CHELYABINSK MASSIF (SOUTH URALS) – EVIDENCE FOR CRUST–MANTLE INTERACTION
title_fullStr Zr-Th-U MINERALS IN HIGH-MG DIORITE OF THE CHELYABINSK MASSIF (SOUTH URALS) – EVIDENCE FOR CRUST–MANTLE INTERACTION
title_full_unstemmed Zr-Th-U MINERALS IN HIGH-MG DIORITE OF THE CHELYABINSK MASSIF (SOUTH URALS) – EVIDENCE FOR CRUST–MANTLE INTERACTION
title_sort zr-th-u minerals in high-mg diorite of the chelyabinsk massif (south urals) – evidence for crust–mantle interaction
publisher Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch
publishDate 2021
url https://www.gt-crust.ru/jour/article/view/1215
https://doi.org/10.5800/GT-2021-12-2-0528
genre Arctic
genre_facet Arctic
op_source Geodynamics & Tectonophysics; Том 12, № 2 (2021); 350-364
Геодинамика и тектонофизика; Том 12, № 2 (2021); 350-364
2078-502X
op_relation https://www.gt-crust.ru/jour/article/view/1215/556
Abersteiner A., Kamenetsky V.S., Goemann K., Giuliani A., Howarth G.H., Castillo-Oliver M., Thompson J., Kamenetsky M., Cherry A., 2019. Composition and Emplacement of the Benfontein Kimberlite Sill Complex (Kimberley, South Africa): Textural, Petrographic and Melt Inclusion Constraints. Lithos 324–325, 297–314. https://doi.org/10.1016/j.lithos.2018.11.017.
Amelin Y., Li C., Naldrett A.J., 1999. Geochronology of the Voisey’s Bay Intrusion, Labrador, Canada, by Precise U–Pb Dating of Coexisting Baddeleyite, Zircon, and Apatite. Lithos 47 (1–2), 33–51. https://doi.org/10.1016/s0024-4937(99)00006-7.
Anfilogov V.N., Krasnobaev A.A., Ryzhkov V.M., 2018. Ancient Age of Zircons and Problems of Dunits Genesis from Gabbro-Hyperbasez Complexes of Folded Areas and Central Type Platform Massives. Lithosphere 18 (5), 706–717 (in Russian) [Анфилогов В.Н., Краснобаев А.А., Рыжков В.М. Древний возраст цирконов и проблемы генезиса дунитов габбро-гипербазитовых комплексов складчатых областей и платформенных массивов центрального типа // Литосфера. 2018. Т. 18. № 5. С. 706–717]. https://doi.org/10.24930/1681-9004-2018-18-5-706-717.
Bao Z., Shi Y., Anderson J.L., Kennedy A., Ke Z., Gu X., Wang P., Che X., Kang Y., Sun H., Wang C., 2020. Petrography and Chronology of Lunar Meteorite Northwest Africa 6950. Science China Information Sciences 63, 140902. https://doi.org/10.1007/s11432-019-2809-3.
Bhushan S.K., Somani O.P., 2019. Rare Earth Elements and Yttrium Potentials of Neoproterozoic Peralkaline Siwana Granite of Malani Igneous Suite, Barmer District, Rajasthan. Journal of the Geological Society of India 94, 35–41. https://doi.org/10.1007/s12594-019-1263-0.
Drogobuzhskaya S.V., Bayanova T.B., Novikov A.I., Neradovskiy Yu.N., Subbotin V.V., Savchenko E.E., 2019. LA-ICPMS Analysis of Baddeleyite, Zircon, Sulfides from Rocks of the Fennoscandian Shield Complex Deposits in the Arctic Region. Proceedings of the Fersman Scientific Session of the GI KSC RAS. Vol. 16. P. 165–169 (in Russian) [Дрогобужская С.В., Баянова Т.Б., Новиков А.И., Нерадовский Ю.Н., Субботин В.В., Cавченко Е.Э. LA-ICP-MS анализ бадделеита, циркона и сульфидов из пород комплексных месторождений Фенноскандинавского щита в пределах Арктического региона // Труды Ферсмановской научной сессии ГИ КНЦ РАН. 2019. Т. 16. С. 165–169]. https://doi.org/10.31241/fns.2019.16.034.
Fan H.P., Zhu W.G., Li Z.X., Zhong H., Bai Z.J., He D.F., Chen C.J., Cao C.Y., 2013. Ca. 1.5 Ga Mafic Magmatism in South China during the Break-up of the Supercontinent Nuna/Columbia: The Zhuqing Fe–Ti–V Oxide Ore-Bearing Mafic Intrusions in Western Yangtze Block. Lithos 168–169, 85–98. https://doi.org/10.1016/j.lithos.2013.02.004.
Fershtater G.B., 2001. Granitoid Magmatism and Continental Crust Formation (Uralian Orogen). Lithosphere 1, 65–85 (in Russian) [Ферштатер Г.Б. Гранитоидный магматизм и формирование континентальной земной коры в ходе развития уральского орогена // Литосфера. 2001. № 1. С. 62–85].
Fershtater G.B., Bea F., Montero M.P., Scarrow J., 2004. Hornblende Gabbro in the Urals: Types, Geochemistry, and Petrogenesis. Geochemistry International 42 (7), 610–629.
French J.E., Heaman L.M., 2010. Precise U–Pb Dating of Paleoproterozoic Mafic Dyke Swarms of the Dharwar Craton, India: Implications for the Existence of the Neoarchean Supercraton Sclavia. Precambrian Research 183 (3), 416–441. https://doi.org/10.1016/j.precamres.2010.05.003.
Gaft M., Reisfeld R., Panczer G., 2005. Luminescence Spectroscopy of Minerals and Materials. Springer-Verlag, Berlin, Heidelberg, New York, 356 p. https://doi.org/10.1017/S0016756806272972.
Geisler T., Schaltegger U., Tomaschek F., 2007. Re-Equilibration of Zircon in Aqueous Fluids and Melts. Elements 3 (1), 43–50. https://doi.org/10.2113/gselements.3.1.43.
Gorobets B.S., Rogozhin A.A., 2001. Luminescence Spectra of Minerals. Guidebook. VIMS, Moscow, 316 p. (in Russian) [Горобец Б.С., Рогожин А.А. Спектры люминесценции минералов: Справочник. М.: Изд-во ВИМС, 2001. 316 с.].
Grimes C.B., John B.E., Kelemen P.B., Mazdab F.K., Wooden J.L., Cheadle M.J., Hanghoj K., Schwartz J.J., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology 35 (7), 643–646. https://doi.org/10.1130/g23603a.1.
Guo F., Guo J., Wang C.Y., Fan W., Li C., Zhao L., Li H., Li J., 2013. Formation of Mafic Magmas through Lower Crustal AFC Processes – An Example from the Jinan Gabbroic Intrusion in the North China Block. Lithos 179, 157–174. https://doi.org/10.1016/j.lithos.2013.05.018.
Heaman L.M., 2009. The Application of U–Pb Geochronology to Mafic, Ultramafic and Alkaline Rocks: An Evaluation of Three Mineral Standards. Chemical Geology 261 (1–2), 43–52. https://doi.org/10.1016/j.chemgeo.2008.10.021.
Heaman L.M., LeCheminant A.N., 1993. Paragenesis and U-Pb Systematics of Baddeleyite (ZrO2). Chemical Geology 110 (1–3), 95–126. https://doi.org/10.1016/0009-2541(93)90249-i.
Ivanyuk G.Yu., Yakovenchuk V.N., Pakhomovsky Y.A., 2002. Kovdor. Laplandia Minerals, Apatity, 326 p. (in Russian) [Иванюк Г.Ю., Яковенчук В.Н., Пахомовский Я.А. Ковдор. Апатиты: Изд-во Минералы Лапландии, 2002. 326 с.].
Jiang Y., Hsu W., 2012. Petrogenesis of Grove Mountains 020090: An Enriched “Lherzolitic” Shergottite. Meteoritics & Planetary Science 47 (9), 1419–1435. https://doi.org/10.1111/j.1945-5100.2012.01404.x.
Kallistov G.A., 2014. Duration and Age Stages of the Formation of the Chelyabinsk Granitoid Batholith. In: Informational Collection of Scientific Papers of IGG UB RAS. Yearbook 2013. IGG UB RAS Publishing House, Ekaterinburg, p. 343–349 (in Russian) [Каллистов Г.А. Длительность и возрастные этапы становления Челябинского гранитоидного батолита. Информационный сборник научных трудов ИГГ УрО РАН. Ежегодник-2013. Екатеринбург: Изд-во ИГГ УрО РАН, 2014. C. 343–349].
Kallistov G.А., Osipova Т.А., 2017. Geology and Geochemistry of Synplutonic Dykes in the Chelyabinsk Granitoid Massif, South Urals. Geodynamics & Tectonophysics 8 (2), 331–345 (in Russian) [Каллистов Г.А., Осипова Т.А. Геология и геохимия синплутонических даек в Челябинском гранитоидном массиве (Южный Урал) // Геодинамика и тектонофизика. 2017. Т. 8. № 2. С. 331–345]. https://doi.org/10.5800/gt-2017-8-2-0244.
Klemme S., Meyer H.-P., 2003. Trace Element Partitioning between Baddeleyite and Carbonatite Melt at High Pressures and High Temperatures. Chemical Geology 199 (3–4), 233–242. https://doi.org/10.1016/s0009-2541(03)00081-0.
Kogarko L.N., Sorokhtina N.V., Kononkova N.N., Klimovich I.V., 2013. Uranium and Thorium in Carbonatitic Minerals from the Guli Massif, Polar Siberia. Geochemistry International 51, 767–776. https://doi.org/10.1134/s0016702913090036.
Li L., Shi Y., Anderson J.L., Cui M., 2016. Sensitive High-Resolution Ion Microprobe U-Pb Dating of Baddeleyite and Zircon from a Monzonite Porphyry in the Xiaoshan Area, Western Henan Province, China: Constraints on Baddeleyite and Zircon Formation Process. Geosphere 12 (4), 1362–1377. https://doi.org/10.1130/ges01328.1.
Ludwig K.R., 1999. User’s Manual for ISOPLOT/EX, Version 2. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 1a, 120 p.
Lumpkin G.R., 1999. Physical and Chemical Characteristics of Baddeleyite (Monoclinic Zirconia) in Natural Environments: An Overview and Case Study. Journal of Nuclear Materials 274 (1–2), 206–217. https://doi.org/10.1016/s0022-3115(99)00066-5.
Mackie R.A., Scoates J.S., Weis D., 2009. Age and Nd–Hf Isotopic Constraints on the Origin of Marginal Rocks from the Muskox Layered Intrusion (Nunavut, Canada) and Implications for the Evolution of the 1.27Ga Mackenzie Large Igneous Province. Precambrian Research 172 (1–2), 46–66. https://doi.org/10.1016/j.precamres.2009.03.007.
Malitch K.N., Belousova E.A., Griffin W.L., Badanina I.Yu., Knauf V.V., O’Reilly S.Y., Pearson N.J., 2017. Laurite and Zircon from the Finero Chromitites (Italy): New Insights into Evolution of the Subcontinental Mantle. Ore Geology Reviews 90, 210–225. http://dx.doi.org/10.1016/j.oregeorev.2017.06.027.
Malitch K.N., Khiller V.V., Badanina I.Y., Belousova E.A., 2015. Results of Dating of Thorianite and Baddeleyite from Carbonatites of the Guli Massif, Russia. Doklady Earth Sciences 464, 1029–1032. https://doi.org/10.1134/S1028334X15100050.
Martin H., Smithies R.H., Rapp R., Moyen J.-F., Champion D., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos 79 (1–2), 1–24. https://doi.org/10.1016/j.lithos.2004.04.048.
Meng F., Zhang J., 2009. Genesis of the Mega-crystal Zircons in the Dunite Veins of North Qaidam Mountains, Northwestern China. Chinese Science Bulletin 54, 4688–4696. https://doi.org/10.1007/s11434-009-0205-4.
Montel J.M., Foret S., Veschambre M., Nicollet C., Provost A., 1996. Electron Microprobe Dating of Monazite. Chemical Geology 131 (1–4), 37–53. https://doi.org/10.1016/0009-2541(96)00024-1.
Nedosekova I.L., 2012. Age and Sources of the Material in the Ilmen-Vishnevogorsk Alkaline Complex (Ural, Russia): Geochemical and Isotopic Rb-Sr, Sm-Nd, U-Pb and Lu-Hf Data. Lithosphere 5, 77–95 (in Russian) [Недосекова И.Л. Возраст и источники вещества Ильмено-Вишневогорского щелочного комплекса (Урал, Россия): геохимические и изотопные Rb-Sr, Sm-Nd, U-Pb и Lu-Hf данные // Литосфера. 2012. № 5. С. 77–95].
Nedosekova I.L., Belousova E.A., Belyatsky B.V., 2014. The U-Pb Age and Lu-Hf Isotope Systems of Zircons in the Ilmen-Vishnevogorsk Alkaline-Carbonatite Complex, South Urals. Lithosphere 5, 19–32 (in Russian) [Недосекова И.Л., Белоусова Е.А., Беляцкий Б.В. U-Pb-возраст и Lu-Hf изотопные системы цирконов Ильмено-Вишневогорского щелочно-карбонатитового комплекса, Южный Урал // Литосфера. 2014. № 5. С. 19–32].
Osipova Т.А., Kallistov G.A., Zaitseva M.V., 2019. Zircon in High-Mg Diorite of the Chelyabinsk Massif (South Urals): Morphology, Geochemical Signature, and Petrogenesis Implications. Geodynamics & Tectonophysics 10 (2), 289–308 (in Russian) [Осипова Т.А., Каллистов Г.А., Зайцева М.В. Циркон из высокомагнезиального диорита Челябинского массива (Южный Урал): морфология, геохимические особенности, петрогенетические аспекты // Геодинамика и тектонофизика. 2017. Т. 10. № 2. С. 289–308]. https://doi.org/10.5800/gt-2019-10-2-0415.
Pavlov N.V., 1949. Chemical Composition of Cr-Spinels in Relation to the Petrographic Rock Composition of Ultrabasic Intrusions. Proceedings of the Institute of Geological Sciences of the USSR Academy of Sciences. Ore Deposits Series 103 (13). Nauka, Moscow, 88 p. (in Russian) [Павлов Н.В. Химический состав хромшпинелидов в связи с петрографическим составом пород ультраосновных интрузивов // Труды ИГН АН СССР. Серия рудных месторождений 1949. Вып. 103. № 13. М.: Наука, 1949. 88 с.].
Popova V.I., Gubin V.A., Churin E.I., Kotlyarov V.A., Khiller V.V., 2013. Rare Metal Mineralization in Granite Pegmatites of Rezhevsky Area at the Middle Urals. Proceedings of the Russian Mineralogical Society 142 (1), 23–38 (in Russian) [Попова В.И., Губин В.А., Чурин Е.И., Котляров В.А., Хиллер В.В. Редкометалльная минерализация гранитных пегматитов Режевского района на Среднем Урале // Записки Российского минералогического общества. 2013. Т. 142. № 1. C. 23–38].
Pouchou J.L., Pichoir F., 1984. A New Model for Quantitative X-Ray Micro-Analysis. Part I: Application to the Analysis of Homogeneous Samples. La Recherche Aerospatiale 3, 13–38.
Pribavkin S.V., Kallistov G.A., Оsipova Т.A., Gottman I.A., Zin’kova E.A., 2019. Geochemical Behavior of Chromium in Minerals of High-Mg Rocks, Associated with Granitoid Massifs of the Urals. Lithosphere 19 (3), 416–435 (in Russian) [Прибавкин С.В., Каллистов Г.А., Осипова Т.А., Готтман И.А., Зинькова Е.А. Распределение хрома в минералах высокомагнезиальных пород, ассоциированных с гранитоидными массивами Урала // Литосфера. 2019. Т. 19. № 3. С. 416–435]. https://doi.org/10.24930/1681-9004-2019-19-3-416-435.
Pribavkin S.V., Ronkin Y.L., Travin A.V., Ponomarchuk V.A., 2007. New Data on the Age of Lamproite-Lamprophyre Magmatism in the Urals. Doklady Earth Sciences 413, 213–215. https://doi.org/10.1134/s1028334x07020171.
Puchkov V.N., 2010. Geology of the Urals and the Surroundings: Topical Problems of Stratigraphy, Tectonics, Geodynamics and Metallogeny. DizajnPoligrafServis, Ufa, 280 p. (in Russian) [Пучков В.Н. Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении). Уфа: ДизайнПолиграфСервис, 2010. 280 с.].
Qian Q., Hermann J., 2010. Formation of High-Mg Diorites through Assimilation of Peridotite by Monzodiorite Magma at Crustal Depths. Journal of Petrology 57 (7), 1381–1416. https://doi.org/10.1093/petrology/egq023.
Rajesh V.J., Arai S., 2006. Baddeleyite-Apatite-Spinel-Phlogopite (BASP) Rock in Achankovil Shear Zone, South India, as a Probable Cumulate from Melts of Carbonatite Affinity. Lithos 90 (1–2), 1–18. https://doi.org/10.1016/j.lithos.2006.01.004.
Rajesh V.J., Yokoyama K., Santosh M., Arai S., Oh C.W., Kim S.W., 2006. Zirconolite and Baddeleyite in an Ultramafic Suite from Southern India: Early Ordovician Carbonatite‐Type Melts Associated with Extensional Collapse of the Gondwana Crust. The Journal of Geology 114 (2), 171–188. https://doi.org/10.1086/499571.
Robinson S.C., Sabina A.P., 1955. Uraninite and Thorianite from Ontario and Quebec1. American Mineralogist 40 (7–8), 624–633.
Ronkin Yu.L., Efimov A.A., Lepikhina G.A., Maslov A.V., Rodionov N.V., 2013. U-Pb Dating of the Baddeleytte-Zircon System from PT-Bearing Dunite of the Konder Massif, Aldan Shield: New Data. Doklady Earth Sciences 450, 607–612. https://doi.org/10.1134/s1028334x13060135.
Scharer U., Berndt J., Deutsch A., 2011. The Genesis of Deep-Mantle Xenocrystic Zircon and Baddeleyite Megacrysts (Mbuji-Mayi Kimberlite): Trace-Element Patterns. European Journal of Mineralogy 23 (2), 241–255. https://doi.org/10.1127/0935-1221/2011/0023-2088.
Standards for Electron Probe Microanalysis, 2020. Available from: https://www.pandhdevelopments.com (Last Accessed July 2020).
Sun J., Tappe S., Kostrovitsky S.I., Liu C.-Z., Skuzovatov S.Yu., Wu F.-Y., 2018. Mantle Sources of Kimberlites through Time: A U-Pb and Lu-Hf Isotope Study of Zircon Megacrysts from the Siberian Diamond Fields. Chemical Geology 479, 228–240. https://doi.org/10.1016/j.chemgeo.2018.01.013.
op_rights Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.5800/GT-2021-12-2-0528
https://doi.org/10.1016/j.lithos.2018.11.017
https://doi.org/10.1016/s0024-4937(99)00006-7
https://doi.org/10.24930/1681-9004-2018-18-5-706-717
https://doi.org/10.1007/s11432-019-2809-3
https://doi.org/1
container_title Nature Communications
container_volume 12
container_issue 1
_version_ 1766302699685412864
spelling ftjgat:oai:oai.gtcrust.elpub.ru:article/1215 2023-05-15T14:28:32+02:00 Zr-Th-U MINERALS IN HIGH-MG DIORITE OF THE CHELYABINSK MASSIF (SOUTH URALS) – EVIDENCE FOR CRUST–MANTLE INTERACTION Zr-Th-U МИНЕРАЛЫ В ВЫСОКОМАГНЕЗИАЛЬНОМ ДИОРИТЕ ЧЕЛЯБИНСКОГО МАССИВА (ЮЖНЫЙ УРАЛ) – ИНДИКАТОРЫ МАНТИЙНО-КОРОВОГО ВЗАИМОДЕЙСТВИЯ T. A. Osipova G. A. Kallistov D. A. Zamyatin V. A. Bulatov Т. А. Осипова Г. А. Каллистов Д. А. Замятин В. А. Булатов The study was carried out under the state assignment of the Institute of Geology and Geochemistry UB RAS (project АААА-А18-118052590029-6 and АААА-А19-119071090011-6). Работа выполнена в рамках государственного задания ИГГ УрО РАН (№ гос. рег. тем АААА-А18-118052590029-6 и АААА-А19-119071090011-6). 2021-06-23 application/pdf https://www.gt-crust.ru/jour/article/view/1215 https://doi.org/10.5800/GT-2021-12-2-0528 rus rus Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch https://www.gt-crust.ru/jour/article/view/1215/556 Abersteiner A., Kamenetsky V.S., Goemann K., Giuliani A., Howarth G.H., Castillo-Oliver M., Thompson J., Kamenetsky M., Cherry A., 2019. Composition and Emplacement of the Benfontein Kimberlite Sill Complex (Kimberley, South Africa): Textural, Petrographic and Melt Inclusion Constraints. Lithos 324–325, 297–314. https://doi.org/10.1016/j.lithos.2018.11.017. Amelin Y., Li C., Naldrett A.J., 1999. Geochronology of the Voisey’s Bay Intrusion, Labrador, Canada, by Precise U–Pb Dating of Coexisting Baddeleyite, Zircon, and Apatite. Lithos 47 (1–2), 33–51. https://doi.org/10.1016/s0024-4937(99)00006-7. Anfilogov V.N., Krasnobaev A.A., Ryzhkov V.M., 2018. Ancient Age of Zircons and Problems of Dunits Genesis from Gabbro-Hyperbasez Complexes of Folded Areas and Central Type Platform Massives. Lithosphere 18 (5), 706–717 (in Russian) [Анфилогов В.Н., Краснобаев А.А., Рыжков В.М. Древний возраст цирконов и проблемы генезиса дунитов габбро-гипербазитовых комплексов складчатых областей и платформенных массивов центрального типа // Литосфера. 2018. Т. 18. № 5. С. 706–717]. https://doi.org/10.24930/1681-9004-2018-18-5-706-717. Bao Z., Shi Y., Anderson J.L., Kennedy A., Ke Z., Gu X., Wang P., Che X., Kang Y., Sun H., Wang C., 2020. Petrography and Chronology of Lunar Meteorite Northwest Africa 6950. Science China Information Sciences 63, 140902. https://doi.org/10.1007/s11432-019-2809-3. Bhushan S.K., Somani O.P., 2019. Rare Earth Elements and Yttrium Potentials of Neoproterozoic Peralkaline Siwana Granite of Malani Igneous Suite, Barmer District, Rajasthan. Journal of the Geological Society of India 94, 35–41. https://doi.org/10.1007/s12594-019-1263-0. Drogobuzhskaya S.V., Bayanova T.B., Novikov A.I., Neradovskiy Yu.N., Subbotin V.V., Savchenko E.E., 2019. LA-ICPMS Analysis of Baddeleyite, Zircon, Sulfides from Rocks of the Fennoscandian Shield Complex Deposits in the Arctic Region. Proceedings of the Fersman Scientific Session of the GI KSC RAS. Vol. 16. P. 165–169 (in Russian) [Дрогобужская С.В., Баянова Т.Б., Новиков А.И., Нерадовский Ю.Н., Субботин В.В., Cавченко Е.Э. LA-ICP-MS анализ бадделеита, циркона и сульфидов из пород комплексных месторождений Фенноскандинавского щита в пределах Арктического региона // Труды Ферсмановской научной сессии ГИ КНЦ РАН. 2019. Т. 16. С. 165–169]. https://doi.org/10.31241/fns.2019.16.034. Fan H.P., Zhu W.G., Li Z.X., Zhong H., Bai Z.J., He D.F., Chen C.J., Cao C.Y., 2013. Ca. 1.5 Ga Mafic Magmatism in South China during the Break-up of the Supercontinent Nuna/Columbia: The Zhuqing Fe–Ti–V Oxide Ore-Bearing Mafic Intrusions in Western Yangtze Block. Lithos 168–169, 85–98. https://doi.org/10.1016/j.lithos.2013.02.004. Fershtater G.B., 2001. Granitoid Magmatism and Continental Crust Formation (Uralian Orogen). Lithosphere 1, 65–85 (in Russian) [Ферштатер Г.Б. Гранитоидный магматизм и формирование континентальной земной коры в ходе развития уральского орогена // Литосфера. 2001. № 1. С. 62–85]. Fershtater G.B., Bea F., Montero M.P., Scarrow J., 2004. Hornblende Gabbro in the Urals: Types, Geochemistry, and Petrogenesis. Geochemistry International 42 (7), 610–629. French J.E., Heaman L.M., 2010. Precise U–Pb Dating of Paleoproterozoic Mafic Dyke Swarms of the Dharwar Craton, India: Implications for the Existence of the Neoarchean Supercraton Sclavia. Precambrian Research 183 (3), 416–441. https://doi.org/10.1016/j.precamres.2010.05.003. Gaft M., Reisfeld R., Panczer G., 2005. Luminescence Spectroscopy of Minerals and Materials. Springer-Verlag, Berlin, Heidelberg, New York, 356 p. https://doi.org/10.1017/S0016756806272972. Geisler T., Schaltegger U., Tomaschek F., 2007. Re-Equilibration of Zircon in Aqueous Fluids and Melts. Elements 3 (1), 43–50. https://doi.org/10.2113/gselements.3.1.43. Gorobets B.S., Rogozhin A.A., 2001. Luminescence Spectra of Minerals. Guidebook. VIMS, Moscow, 316 p. (in Russian) [Горобец Б.С., Рогожин А.А. Спектры люминесценции минералов: Справочник. М.: Изд-во ВИМС, 2001. 316 с.]. Grimes C.B., John B.E., Kelemen P.B., Mazdab F.K., Wooden J.L., Cheadle M.J., Hanghoj K., Schwartz J.J., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology 35 (7), 643–646. https://doi.org/10.1130/g23603a.1. Guo F., Guo J., Wang C.Y., Fan W., Li C., Zhao L., Li H., Li J., 2013. Formation of Mafic Magmas through Lower Crustal AFC Processes – An Example from the Jinan Gabbroic Intrusion in the North China Block. Lithos 179, 157–174. https://doi.org/10.1016/j.lithos.2013.05.018. Heaman L.M., 2009. The Application of U–Pb Geochronology to Mafic, Ultramafic and Alkaline Rocks: An Evaluation of Three Mineral Standards. Chemical Geology 261 (1–2), 43–52. https://doi.org/10.1016/j.chemgeo.2008.10.021. Heaman L.M., LeCheminant A.N., 1993. Paragenesis and U-Pb Systematics of Baddeleyite (ZrO2). Chemical Geology 110 (1–3), 95–126. https://doi.org/10.1016/0009-2541(93)90249-i. Ivanyuk G.Yu., Yakovenchuk V.N., Pakhomovsky Y.A., 2002. Kovdor. Laplandia Minerals, Apatity, 326 p. (in Russian) [Иванюк Г.Ю., Яковенчук В.Н., Пахомовский Я.А. Ковдор. Апатиты: Изд-во Минералы Лапландии, 2002. 326 с.]. Jiang Y., Hsu W., 2012. Petrogenesis of Grove Mountains 020090: An Enriched “Lherzolitic” Shergottite. Meteoritics & Planetary Science 47 (9), 1419–1435. https://doi.org/10.1111/j.1945-5100.2012.01404.x. Kallistov G.A., 2014. Duration and Age Stages of the Formation of the Chelyabinsk Granitoid Batholith. In: Informational Collection of Scientific Papers of IGG UB RAS. Yearbook 2013. IGG UB RAS Publishing House, Ekaterinburg, p. 343–349 (in Russian) [Каллистов Г.А. Длительность и возрастные этапы становления Челябинского гранитоидного батолита. Информационный сборник научных трудов ИГГ УрО РАН. Ежегодник-2013. Екатеринбург: Изд-во ИГГ УрО РАН, 2014. C. 343–349]. Kallistov G.А., Osipova Т.А., 2017. Geology and Geochemistry of Synplutonic Dykes in the Chelyabinsk Granitoid Massif, South Urals. Geodynamics & Tectonophysics 8 (2), 331–345 (in Russian) [Каллистов Г.А., Осипова Т.А. Геология и геохимия синплутонических даек в Челябинском гранитоидном массиве (Южный Урал) // Геодинамика и тектонофизика. 2017. Т. 8. № 2. С. 331–345]. https://doi.org/10.5800/gt-2017-8-2-0244. Klemme S., Meyer H.-P., 2003. Trace Element Partitioning between Baddeleyite and Carbonatite Melt at High Pressures and High Temperatures. Chemical Geology 199 (3–4), 233–242. https://doi.org/10.1016/s0009-2541(03)00081-0. Kogarko L.N., Sorokhtina N.V., Kononkova N.N., Klimovich I.V., 2013. Uranium and Thorium in Carbonatitic Minerals from the Guli Massif, Polar Siberia. Geochemistry International 51, 767–776. https://doi.org/10.1134/s0016702913090036. Li L., Shi Y., Anderson J.L., Cui M., 2016. Sensitive High-Resolution Ion Microprobe U-Pb Dating of Baddeleyite and Zircon from a Monzonite Porphyry in the Xiaoshan Area, Western Henan Province, China: Constraints on Baddeleyite and Zircon Formation Process. Geosphere 12 (4), 1362–1377. https://doi.org/10.1130/ges01328.1. Ludwig K.R., 1999. User’s Manual for ISOPLOT/EX, Version 2. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 1a, 120 p. Lumpkin G.R., 1999. Physical and Chemical Characteristics of Baddeleyite (Monoclinic Zirconia) in Natural Environments: An Overview and Case Study. Journal of Nuclear Materials 274 (1–2), 206–217. https://doi.org/10.1016/s0022-3115(99)00066-5. Mackie R.A., Scoates J.S., Weis D., 2009. Age and Nd–Hf Isotopic Constraints on the Origin of Marginal Rocks from the Muskox Layered Intrusion (Nunavut, Canada) and Implications for the Evolution of the 1.27Ga Mackenzie Large Igneous Province. Precambrian Research 172 (1–2), 46–66. https://doi.org/10.1016/j.precamres.2009.03.007. Malitch K.N., Belousova E.A., Griffin W.L., Badanina I.Yu., Knauf V.V., O’Reilly S.Y., Pearson N.J., 2017. Laurite and Zircon from the Finero Chromitites (Italy): New Insights into Evolution of the Subcontinental Mantle. Ore Geology Reviews 90, 210–225. http://dx.doi.org/10.1016/j.oregeorev.2017.06.027. Malitch K.N., Khiller V.V., Badanina I.Y., Belousova E.A., 2015. Results of Dating of Thorianite and Baddeleyite from Carbonatites of the Guli Massif, Russia. Doklady Earth Sciences 464, 1029–1032. https://doi.org/10.1134/S1028334X15100050. Martin H., Smithies R.H., Rapp R., Moyen J.-F., Champion D., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos 79 (1–2), 1–24. https://doi.org/10.1016/j.lithos.2004.04.048. Meng F., Zhang J., 2009. Genesis of the Mega-crystal Zircons in the Dunite Veins of North Qaidam Mountains, Northwestern China. Chinese Science Bulletin 54, 4688–4696. https://doi.org/10.1007/s11434-009-0205-4. Montel J.M., Foret S., Veschambre M., Nicollet C., Provost A., 1996. Electron Microprobe Dating of Monazite. Chemical Geology 131 (1–4), 37–53. https://doi.org/10.1016/0009-2541(96)00024-1. Nedosekova I.L., 2012. Age and Sources of the Material in the Ilmen-Vishnevogorsk Alkaline Complex (Ural, Russia): Geochemical and Isotopic Rb-Sr, Sm-Nd, U-Pb and Lu-Hf Data. Lithosphere 5, 77–95 (in Russian) [Недосекова И.Л. Возраст и источники вещества Ильмено-Вишневогорского щелочного комплекса (Урал, Россия): геохимические и изотопные Rb-Sr, Sm-Nd, U-Pb и Lu-Hf данные // Литосфера. 2012. № 5. С. 77–95]. Nedosekova I.L., Belousova E.A., Belyatsky B.V., 2014. The U-Pb Age and Lu-Hf Isotope Systems of Zircons in the Ilmen-Vishnevogorsk Alkaline-Carbonatite Complex, South Urals. Lithosphere 5, 19–32 (in Russian) [Недосекова И.Л., Белоусова Е.А., Беляцкий Б.В. U-Pb-возраст и Lu-Hf изотопные системы цирконов Ильмено-Вишневогорского щелочно-карбонатитового комплекса, Южный Урал // Литосфера. 2014. № 5. С. 19–32]. Osipova Т.А., Kallistov G.A., Zaitseva M.V., 2019. Zircon in High-Mg Diorite of the Chelyabinsk Massif (South Urals): Morphology, Geochemical Signature, and Petrogenesis Implications. Geodynamics & Tectonophysics 10 (2), 289–308 (in Russian) [Осипова Т.А., Каллистов Г.А., Зайцева М.В. Циркон из высокомагнезиального диорита Челябинского массива (Южный Урал): морфология, геохимические особенности, петрогенетические аспекты // Геодинамика и тектонофизика. 2017. Т. 10. № 2. С. 289–308]. https://doi.org/10.5800/gt-2019-10-2-0415. Pavlov N.V., 1949. Chemical Composition of Cr-Spinels in Relation to the Petrographic Rock Composition of Ultrabasic Intrusions. Proceedings of the Institute of Geological Sciences of the USSR Academy of Sciences. Ore Deposits Series 103 (13). Nauka, Moscow, 88 p. (in Russian) [Павлов Н.В. Химический состав хромшпинелидов в связи с петрографическим составом пород ультраосновных интрузивов // Труды ИГН АН СССР. Серия рудных месторождений 1949. Вып. 103. № 13. М.: Наука, 1949. 88 с.]. Popova V.I., Gubin V.A., Churin E.I., Kotlyarov V.A., Khiller V.V., 2013. Rare Metal Mineralization in Granite Pegmatites of Rezhevsky Area at the Middle Urals. Proceedings of the Russian Mineralogical Society 142 (1), 23–38 (in Russian) [Попова В.И., Губин В.А., Чурин Е.И., Котляров В.А., Хиллер В.В. Редкометалльная минерализация гранитных пегматитов Режевского района на Среднем Урале // Записки Российского минералогического общества. 2013. Т. 142. № 1. C. 23–38]. Pouchou J.L., Pichoir F., 1984. A New Model for Quantitative X-Ray Micro-Analysis. Part I: Application to the Analysis of Homogeneous Samples. La Recherche Aerospatiale 3, 13–38. Pribavkin S.V., Kallistov G.A., Оsipova Т.A., Gottman I.A., Zin’kova E.A., 2019. Geochemical Behavior of Chromium in Minerals of High-Mg Rocks, Associated with Granitoid Massifs of the Urals. Lithosphere 19 (3), 416–435 (in Russian) [Прибавкин С.В., Каллистов Г.А., Осипова Т.А., Готтман И.А., Зинькова Е.А. Распределение хрома в минералах высокомагнезиальных пород, ассоциированных с гранитоидными массивами Урала // Литосфера. 2019. Т. 19. № 3. С. 416–435]. https://doi.org/10.24930/1681-9004-2019-19-3-416-435. Pribavkin S.V., Ronkin Y.L., Travin A.V., Ponomarchuk V.A., 2007. New Data on the Age of Lamproite-Lamprophyre Magmatism in the Urals. Doklady Earth Sciences 413, 213–215. https://doi.org/10.1134/s1028334x07020171. Puchkov V.N., 2010. Geology of the Urals and the Surroundings: Topical Problems of Stratigraphy, Tectonics, Geodynamics and Metallogeny. DizajnPoligrafServis, Ufa, 280 p. (in Russian) [Пучков В.Н. Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении). Уфа: ДизайнПолиграфСервис, 2010. 280 с.]. Qian Q., Hermann J., 2010. Formation of High-Mg Diorites through Assimilation of Peridotite by Monzodiorite Magma at Crustal Depths. Journal of Petrology 57 (7), 1381–1416. https://doi.org/10.1093/petrology/egq023. Rajesh V.J., Arai S., 2006. Baddeleyite-Apatite-Spinel-Phlogopite (BASP) Rock in Achankovil Shear Zone, South India, as a Probable Cumulate from Melts of Carbonatite Affinity. Lithos 90 (1–2), 1–18. https://doi.org/10.1016/j.lithos.2006.01.004. Rajesh V.J., Yokoyama K., Santosh M., Arai S., Oh C.W., Kim S.W., 2006. Zirconolite and Baddeleyite in an Ultramafic Suite from Southern India: Early Ordovician Carbonatite‐Type Melts Associated with Extensional Collapse of the Gondwana Crust. The Journal of Geology 114 (2), 171–188. https://doi.org/10.1086/499571. Robinson S.C., Sabina A.P., 1955. Uraninite and Thorianite from Ontario and Quebec1. American Mineralogist 40 (7–8), 624–633. Ronkin Yu.L., Efimov A.A., Lepikhina G.A., Maslov A.V., Rodionov N.V., 2013. U-Pb Dating of the Baddeleytte-Zircon System from PT-Bearing Dunite of the Konder Massif, Aldan Shield: New Data. Doklady Earth Sciences 450, 607–612. https://doi.org/10.1134/s1028334x13060135. Scharer U., Berndt J., Deutsch A., 2011. The Genesis of Deep-Mantle Xenocrystic Zircon and Baddeleyite Megacrysts (Mbuji-Mayi Kimberlite): Trace-Element Patterns. European Journal of Mineralogy 23 (2), 241–255. https://doi.org/10.1127/0935-1221/2011/0023-2088. Standards for Electron Probe Microanalysis, 2020. Available from: https://www.pandhdevelopments.com (Last Accessed July 2020). Sun J., Tappe S., Kostrovitsky S.I., Liu C.-Z., Skuzovatov S.Yu., Wu F.-Y., 2018. Mantle Sources of Kimberlites through Time: A U-Pb and Lu-Hf Isotope Study of Zircon Megacrysts from the Siberian Diamond Fields. Chemical Geology 479, 228–240. https://doi.org/10.1016/j.chemgeo.2018.01.013. Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Geodynamics & Tectonophysics; Том 12, № 2 (2021); 350-364 Геодинамика и тектонофизика; Том 12, № 2 (2021); 350-364 2078-502X электронно-зондовый микроанализ baddeleyite uranotorianite zircon petrogenesis crust–mantle interaction South Urals cathodoluminescence electron probe microanalysis бадделеит ураноторианит циркон петрогенезис мантийно-коровое взаимодействие Южный Урал катодолюминесценция info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2021 ftjgat https://doi.org/10.5800/GT-2021-12-2-0528 https://doi.org/10.1016/j.lithos.2018.11.017 https://doi.org/10.1016/s0024-4937(99)00006-7 https://doi.org/10.24930/1681-9004-2018-18-5-706-717 https://doi.org/10.1007/s11432-019-2809-3 https://doi.org/1 2022-07-19T15:36:22Z Zr-Th-U minerals, namely baddeleyite, zircon and U-Th-oxide, were found in high-Mg diorite from the Late Devonian – Early Carboniferous synplutonic dyke in granodiorites of the Chelyabinsk massif, South Urals. Micron-sized minerals were investigated by electron microscopy and cathodoluminescence spectroscopy. Their chemical compositions were determined by electron probe microanalysis that was optimized to ensure more precise measurements of the composition of minerals. Baddeleyite grains are found as inclusions in amphibole crystals and reside in intergranular areas. The former retain their composition and show no traces of corrosion or substitution. In the intergranular areas, baddeleyite grains were replaced by polycrystalline zircon due to the reaction with an acid melt, and the U-Th-oxide precipitated inside baddeleyite simultaneously, which suggests the restite origin of baddeleyite. The main features of the baddeleyite composition are extremely high concentrations of ThO2 and UO2 (to 0.03 wt. % and 1.0 wt. %, respectively), which may be due to the metasomatic interaction between the mantle peridotite and the crustal or carbonatite fluid or melt. В высокомагнезиальном диорите, слагающем синплутоническую дайку позднедевонско-раннекаменноугольного возраста в гранодиоритах Челябинского гранитоидного массива на Южном Урале, выявлена ассоциация Zr-Th-U минералов, представленная бадделеитом, ураноторианитом и цирконом. Минералы микронного размера исследовались методом электронной микроскопии и катодолюминесценции, а химический состав определялся методом электронно-зондового микроанализа (ЭЗМА), который был оптимизирован для измерения состава минералов с высокой локальностью. Бадделеит присутствует в виде включений субидиоморфных кристаллов в амфиболе и в межзерновом пространстве. Заключенный в амфиболе бадделеит сохраняет свой состав и не подвергается коррозии или замещению. В межзерновом пространстве в результате реакции с кремнекислым расплавом бадделеит замещается полизернистым цирконом с одновременным ... Article in Journal/Newspaper Arctic Geodynamics & Tectonophysics (E-Journal) Nature Communications 12 1