RECONSTRUCTION OF THE TECTONIC STRESS FIELD IN THE DEEP PARTS OF THE SOUTHERN KURIL-KAMCHATKA AND NORTHERN JAPAN SUBDUCTION ZONES

Earthquake focal mechanisms in the Southern Kuril-Kamchatka and Northern Japan subduction zones were analysed to investigate the features of the tectonic stress field inside the Pacific lithospheric plate subducting into the upper mantle. Earthquake focal mechanism (hypocenter depths of more than 20...

Full description

Bibliographic Details
Published in:SAD The Journal of Siberian Studies
Main Authors: D. A. Safonov, Д. А. Сафонов
Format: Article in Journal/Newspaper
Language:Russian
Published: Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch 2020
Subjects:
Online Access:https://www.gt-crust.ru/jour/article/view/1122
https://doi.org/10.5800/GT-2020-11-4-0504
id ftjgat:oai:oai.gtcrust.elpub.ru:article/1122
record_format openpolar
institution Open Polar
collection Geodynamics & Tectonophysics (E-Journal)
op_collection_id ftjgat
language Russian
topic глубокофокусное землетрясение
Kuril-Kamchatka region
Japan seismic focal zone
subduction zone
tectonic stress field
deep-focus earthquake
Курило-Камчатский регион
Японская сейсмофокальная зона
зона субдукции
поле тектонических напряжений
spellingShingle глубокофокусное землетрясение
Kuril-Kamchatka region
Japan seismic focal zone
subduction zone
tectonic stress field
deep-focus earthquake
Курило-Камчатский регион
Японская сейсмофокальная зона
зона субдукции
поле тектонических напряжений
D. A. Safonov
Д. А. Сафонов
RECONSTRUCTION OF THE TECTONIC STRESS FIELD IN THE DEEP PARTS OF THE SOUTHERN KURIL-KAMCHATKA AND NORTHERN JAPAN SUBDUCTION ZONES
topic_facet глубокофокусное землетрясение
Kuril-Kamchatka region
Japan seismic focal zone
subduction zone
tectonic stress field
deep-focus earthquake
Курило-Камчатский регион
Японская сейсмофокальная зона
зона субдукции
поле тектонических напряжений
description Earthquake focal mechanisms in the Southern Kuril-Kamchatka and Northern Japan subduction zones were analysed to investigate the features of the tectonic stress field inside the Pacific lithospheric plate subducting into the upper mantle. Earthquake focal mechanism (hypocenter depths of more than 200 km) were taken from the 1966– 2018 NIED, IMGiG FEB RAS and GlobalCMT catalogues. The tectonic stress field was reconstructed by the cataclastic analysis method, using a coordinate system related to the subducting plate. In most parts of the studied seismic focal zone, the axis of the principal compression stress approximately coincides with the direction of the Pacific lithospheric plate subduction beneath the Sea of Okhotsk. It slightly deviates towards the hinge zone separating the studied regions. The principal tension stress axis is most often perpendicular to the plate movement, but less stable in direction. This leads to compression relative to the slab in some parts of the studied regions, and causes shearing in others. The hinge zone is marked by the unstable position of the tension axis and high values of the Lode–Nadai coefficient, corresponding to the conditions of uniaxial compression, while the compression direction remains the same, towards the slab movement. Two more areas of uniaxial compression are located below the Sea of Japan at depths of 400–500 km. Рассмотрены особенности поля тектонических напряжений внутри погружающейся в верхнюю мантию Тихоокеанской литосферной плиты в пределах южной части Курило-Камчатской и северной части Японской зоны субдукции на основе механизмов очагов землетрясений. Привлечены данные доступных каталогов механизмов очагов землетрясений с глубиной гипоцентра более 200 км временного периода 1966–2018 гг. по данным NIED, ИМГиГ ДВО РАН и GlobalCMT. Анализ данных проводился в системе координат, связанной с погружающейся плитой. Реконструкция поля тектонических напряжений выполнена методом катакластического анализа. Показано, что ось главного напряжения сжатия почти на ...
format Article in Journal/Newspaper
author D. A. Safonov
Д. А. Сафонов
author_facet D. A. Safonov
Д. А. Сафонов
author_sort D. A. Safonov
title RECONSTRUCTION OF THE TECTONIC STRESS FIELD IN THE DEEP PARTS OF THE SOUTHERN KURIL-KAMCHATKA AND NORTHERN JAPAN SUBDUCTION ZONES
title_short RECONSTRUCTION OF THE TECTONIC STRESS FIELD IN THE DEEP PARTS OF THE SOUTHERN KURIL-KAMCHATKA AND NORTHERN JAPAN SUBDUCTION ZONES
title_full RECONSTRUCTION OF THE TECTONIC STRESS FIELD IN THE DEEP PARTS OF THE SOUTHERN KURIL-KAMCHATKA AND NORTHERN JAPAN SUBDUCTION ZONES
title_fullStr RECONSTRUCTION OF THE TECTONIC STRESS FIELD IN THE DEEP PARTS OF THE SOUTHERN KURIL-KAMCHATKA AND NORTHERN JAPAN SUBDUCTION ZONES
title_full_unstemmed RECONSTRUCTION OF THE TECTONIC STRESS FIELD IN THE DEEP PARTS OF THE SOUTHERN KURIL-KAMCHATKA AND NORTHERN JAPAN SUBDUCTION ZONES
title_sort reconstruction of the tectonic stress field in the deep parts of the southern kuril-kamchatka and northern japan subduction zones
publisher Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch
publishDate 2020
url https://www.gt-crust.ru/jour/article/view/1122
https://doi.org/10.5800/GT-2020-11-4-0504
geographic Okhotsk
Pacific
geographic_facet Okhotsk
Pacific
genre Kamchatka
genre_facet Kamchatka
op_source Geodynamics & Tectonophysics; Том 11, № 4 (2020); 743-755
Геодинамика и тектонофизика; Том 11, № 4 (2020); 743-755
2078-502X
op_relation https://www.gt-crust.ru/jour/article/view/1122/529
Astiz L., Lay T., Kanamori H., 1988. Large Intermediate-Depth Earthquakes and the Subduction Process. Physics of the Earth and Planetary Interiors 53 (1–2), 80–166. https://doi.org/10.1016/0031-9201(88)90138-0.
Аверьянова В.Н. Глубинная сейсмотектоника островных дуг: северо-запад Тихого океана. М.: Наука, 1975. 219 с.
Балакина Л.М. Курило-Камчатская сейсмогенная зона – строение и порядок генерации землетрясений // Физика Земли. 1995. № 12. С. 48–57.
Barnes G.L., 2003. Origins of the Japanese Islands: The New «Big Picture». Nichibunken Japan Review 15, 3–50. https://www.jstor.org/stable/25791268.
Bird P., 2003. An Updated Digital Model of Plate Boundaries. Geochemistry, Geophysics, Geosystems 4 (3). https://doi.org/10.1029/2001GC000252.
Christova C.V., 2015. Spatial Distribution of the Contemporary Stress Field in the Kurile Wadati-Benioff Zone by Inversion of Earthquake Focal Mechanisms. Journal of Geodynamics 83, 1–17. https://doi.org/10.1016/j.jog.2014.11.001.
Christova C., Hirata N., Kato A., 2006. Contemporary Stress Field in the Wadati-Benioff Zone at the Japan-Kurile Arc-Arc Junction (North Honshu, the Hokkaido Corner and Hokkaido Island) by Inversion of Earthquake Focal Mechanisms. Bulletin of the Earthquake Research Institute 81, 1–18.
Christova C., Tsapanos T., 2000. Depth Distribution of Stresses in the Hokkaido Wadati-Benioff Zone as Deduced by Inversion of Earthquake Focal Mechanisms. Journal of Geodynamics 30 (5), 557–573. https://doi.org/10.1016/S0264-3707(00)00009-0.
DeMets C., Gordon R.G., Argus D.F., 2010. Geologically Current Plate Motion. Geophysical Journal International 181 (1), 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x.
Dziewonski A.M., Chou T-A., Woodhouse J.H., 1981. Determination of Earthquake Source Parameters from Waveform Data for Studies of Global and Regional Seismicity. Journal of Geophysical Research: Solid Earth 86 (В4), 2825. https://doi.org/10.1029/JB086iB04p02825.
Ekström G., Nettles M., Dziewonski A.M., 2012. The Global CMT Project 2004–2010: Centroid-Moment Tensors for 13.017 Earthquakes. Physics of the Earth and Planetary Interiors 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002.
Fujita K., Kanamori H., 1981. Double Seismic Zones and Stresses of Intermediate Depth Earthquakes. Geophysical Journal International 66 (1), 131-156. https://doi.org/10.1111/j.1365-246X.1981.tb05950.x.
Ghimire S., Kasahara M., 2009. Spatial Variation in Seismotectonics and Stress Conditions across the Kurile and Japan Trenches Inferred from the Analysis of Focal Mechanism Data in Hokkaido, Northern Japan. Journal of Geodynamics 47 (2–3), 153–166. https://doi.org/10.1016/j.jog.2008.07.007.
Glennon M.A., Chen W.-P., 1993. Systematics of Deep‐Focus Earthquakes along the Kuril‐Kamchatka Arc and Their Implications on Mantle Dynamics. Journal of Geophysical Research: Solid Earth 98 (B1), 735–769. https://doi.org/10.1029/92JB01742.
Hayes G.P., 2018. Slab2 – A Comprehensive Subduction Zone Geometry Model: U.S. Geological Survey data release. https://doi.org/10.5066/F7PV6JNV.
Hayes G.P., Wald D.J., Johnson R.L., 2012. Slab1.0: A Three‐Dimensional Model of Global Subduction Zone Geometries. Journal of Geophysical Research: Solid Earth 117 (B1). https://doi.org/10.1029/2011JB008524.
Horiuchi S., Koyama J., Izutani Y., Onodera I., Hirasawa T., 1975. Earthquake Generating Stress in the Kurile-Kamchatka Seismic Region Derived from Superposition of P-Wave Initial Motions. The Science Reports of the Tohoku University. Ser. 5. Tohoku Geophysical Journal 23 (2), 67–81.
Huang J., Zhao D., 2006. High‐Resolution Mantle Tomography of China and Surrounding Regions. Journal of Geophysical Research: Solid Earth 111 (B9). https://doi.org/10.1029/2005JB004066.
Igarashi T., Matsuzawa T., Umino N., Hasegawa A., 2001. Spatial Distribution of Focal Mechanisms for Interplate and Intraplate Earthquakes Associated with the Subducting Pacific Plate beneath the Northeastern Japan Arc: A Triple‐Planed Deep Seismic Zone. Journal of Geophysical Research: Solid Earth 106 (B2), 2177–2191. https://doi.org/10.1029/2000JB900386.
Isacks B.L., Oliver J., Sykes L.R., 1968. Seismology and the New Global Tectonics. Journal of Geophysical Research, 73, 5855–5899. https://doi.org/10.1029/JB073i018p05855.
Katsumata K., Wada N., Kasahara M., 2003. Newly Imaged Shape of the Deep Seismic Zone within the Subducting Pacific Plate beneath the Hokkaido Corner, Japan‐Kurile Arc‐Arc Junction. Journal of Geophysical Research: Solid Earth 108 (B12). https://doi.org/10.1029/2002JB002175.
Хаин В.Е., Ломизе М.Г. Геотектоника с основами геодинамики. М.: Книжный дом «Университет», 2005. 500 c.
Kogan M.G., Vasilenko N.F., Frolov D.I., Freymueller J.T., Steblov G.M., Levin B.W., Prytkov A.S., 2011. The Mechanism of Postseismic Deformation Triggered by the 2006–2007 Great Kuril Earthquakes. Geophysical Research Letters 38 (6). https://doi.org/10.1029/2011GL046855.
Kubo A., Fukuyama E., Kawa H., Nonomura K., 2002. NIED Seismic Moment Tensor Catalogue for Regional Earthquakes around Japan: Quality Test and Application. Tectonophysics 356 (1), 23–48. https://doi.org/10.1016/S0040-1951(02)00375-X.
Lallemand S., 2016. Philippine Sea Plate Inception, Evolution, and Consumption with Special Emphasis on the Early Stages of Izu-Bonin-Mariana Subduction. Progress in Earth and Planetary Science 3 (15). https://doi.org/10.1186/s40645-016-0085-6.
Lay T., Ammon C.J., Kanamori H., Kim M.J., Xue L., 2011. Outer Trench-Slope Faulting and the 2011 Mw 9.0 off the Pacific Coast of Tohoku Earthquake. Earth, Planets and Space 63 (37), 713–718. https://doi.org/10.5047/eps.2011.05.006.
Полец А.Ю. Напряженно-деформированное состояние зоны глубокофокусных землетрясений региона Японского моря // Геосистемы переходных зон. 2018. Т. 2. № 4. С. 302–311. http://dx.doi.org/10.30730/2541-8912.2018.2.4.302-311.
Polets A.Yu., Zlobin T.K., 2014. Estimation of the Stress State of the Earth’s Crust and the Upper Mantle in the Area of the Southern Kuril Islands. Russian Journal of Pacific Geology 8 (2), 126–137. https://doi.org/10.1134/S1819714014020067.
Поплавская Л.Н., Рудик М.И., Нагорных Т.В., Сафонов Д.А. Каталог механизмов очагов сильных (М≥6.0) землетрясений Курило-Охотского региона 1964–2009 гг. Владивосток: Дальнаука, 2011. 131 с.
Ребецкий Ю.Л. Методы реконструкции тектонических напряжений и сейсмотектонических деформаций на основе современной теории пластичности // Доклады Академии наук. 1999. Т. 365. № 3. С. 392–395.
Ребецкий Ю.Л. Развитие метода катакластического анализа сколов для оценки величин тектонических напряжений // Доклады Академии наук. 2003. Т. 388. № 2. С. 237–241.
Ребецкий Ю.Л., Полец А.Ю. Напряженное состояние литосферы Японии перед катастрофическим землетрясением Тохоку 11.03.2011 // Геодинамика и тектонофизика. 2014. Т. 5 № 2. C. 469–506. https://doi.org/10.5800/GT-2014-5-2-0137.
Родкин М.В., Рундквист Д.В. Геофлюидогеодинамика. Приложение к сейсмологии, тектонике, процессам рудо- и нефтегенеза. Долгопрудный: Интеллект, 2017. 288 с.
Сафонов Д.А. Пространственное распределение тектонических напряжений в южной глубокой части Курило-Камчатской зоны субдукции // Геосистемы переходных зон. 2019. Т. 3. № 2. С. 175–188. http://dx.doi.org/10.30730/2541-8912.2019.3.2.175-188.
Safonov D.A., Konovalov A.V., Zlobin T.K., 2015. The Urup Earthquake Sequence of 2012–2013. Journal of Volcanology and Seismology 9, 402–411. https://doi.org/10.1134/S074204631506007X.
Сафонов Д.А., Нагорных Т.В., Коваленко Н.С. Сейсмичность региона Приамурье и Приморье. Южно-Сахалинск: ИМГиГ ДВО РАН. 2019. 104 с. http://dx.doi.org/10.30730/978-5-6040621-0-4.2019-1.
Terakawa T., Matsu’ura M., 2010. The 3‐D Tectonic Stress Fields in and around Japan Inverted from Centroid Moment Tensor Data of Seismic Events. Tectonics 29 (6). https://doi.org/10.1029/2009TC002626.
Wada I., He J., Hasegawa A., Nakajima J., 2015. Mantle Wedge Flow Pattern and Thermal Structure in Northeast Japan: Effects of Oblique Subduction and 3-D Slab Geometry. Earth and Planetary Science Letters 426, 76–88. https://doi.org/10.1016/j.epsl.2015.06.021.
Zhang H., Thurber C.H., Shelly D., Ide S., Beroza G.C., Hasegawa A., 2004. High-Resolution Subducting-Slab Structure beneath Northern Honshu, Japan, Revealed by Double-Difference Tomography. Geology 32 (4), 361–364. https://doi.org/10.1130/G20261.2.
Zlobin T.K., Safonov D.A., Polets A.Y., 2011. Distribution of Earthquakes by the Types of the Source Motions in the Kuril-Okhotsk Region. Doklady Earth Sciences 440, 1410. https://doi.org/10.1134/S1028334X11100096.
https://www.gt-crust.ru/jour/article/view/1122
doi:10.5800/GT-2020-11-4-0504
op_rights Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.5800/GT-2020-11-4-0504
https://doi.org/10.1016/0031-9201(88)90138-0
https://doi.org/10.1029/2001GC000252
https://doi.org/10.1016/j.jog.2014.11.001
https://doi.org/10.1016/S0264-3707(00)00009-0
https://doi.org/10.1111/j.1365-24
container_title SAD The Journal of Siberian Studies
container_volume 1
container_issue 1
_version_ 1766051081731702784
spelling ftjgat:oai:oai.gtcrust.elpub.ru:article/1122 2023-05-15T16:58:57+02:00 RECONSTRUCTION OF THE TECTONIC STRESS FIELD IN THE DEEP PARTS OF THE SOUTHERN KURIL-KAMCHATKA AND NORTHERN JAPAN SUBDUCTION ZONES РЕКОНСТРУКЦИЯ ПОЛЯ ТЕКТОНИЧЕСКИХ НАПРЯЖЕНИЙ ГЛУБОКОЙ ЧАСТИ ЮЖНОГО СЕГМЕНТА КУРИЛО-КАМЧАТСКОЙ И СЕВЕРНОГО СЕГМЕНТА ЯПОНСКОЙ ЗОНЫ СУБДУКЦИИ D. A. Safonov Д. А. Сафонов 2020-12-15 application/pdf https://www.gt-crust.ru/jour/article/view/1122 https://doi.org/10.5800/GT-2020-11-4-0504 rus rus Institute of the Earth's crust of the Russian Academy of Sciences, Siberian Branch https://www.gt-crust.ru/jour/article/view/1122/529 Astiz L., Lay T., Kanamori H., 1988. Large Intermediate-Depth Earthquakes and the Subduction Process. Physics of the Earth and Planetary Interiors 53 (1–2), 80–166. https://doi.org/10.1016/0031-9201(88)90138-0. Аверьянова В.Н. Глубинная сейсмотектоника островных дуг: северо-запад Тихого океана. М.: Наука, 1975. 219 с. Балакина Л.М. Курило-Камчатская сейсмогенная зона – строение и порядок генерации землетрясений // Физика Земли. 1995. № 12. С. 48–57. Barnes G.L., 2003. Origins of the Japanese Islands: The New «Big Picture». Nichibunken Japan Review 15, 3–50. https://www.jstor.org/stable/25791268. Bird P., 2003. An Updated Digital Model of Plate Boundaries. Geochemistry, Geophysics, Geosystems 4 (3). https://doi.org/10.1029/2001GC000252. Christova C.V., 2015. Spatial Distribution of the Contemporary Stress Field in the Kurile Wadati-Benioff Zone by Inversion of Earthquake Focal Mechanisms. Journal of Geodynamics 83, 1–17. https://doi.org/10.1016/j.jog.2014.11.001. Christova C., Hirata N., Kato A., 2006. Contemporary Stress Field in the Wadati-Benioff Zone at the Japan-Kurile Arc-Arc Junction (North Honshu, the Hokkaido Corner and Hokkaido Island) by Inversion of Earthquake Focal Mechanisms. Bulletin of the Earthquake Research Institute 81, 1–18. Christova C., Tsapanos T., 2000. Depth Distribution of Stresses in the Hokkaido Wadati-Benioff Zone as Deduced by Inversion of Earthquake Focal Mechanisms. Journal of Geodynamics 30 (5), 557–573. https://doi.org/10.1016/S0264-3707(00)00009-0. DeMets C., Gordon R.G., Argus D.F., 2010. Geologically Current Plate Motion. Geophysical Journal International 181 (1), 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x. Dziewonski A.M., Chou T-A., Woodhouse J.H., 1981. Determination of Earthquake Source Parameters from Waveform Data for Studies of Global and Regional Seismicity. Journal of Geophysical Research: Solid Earth 86 (В4), 2825. https://doi.org/10.1029/JB086iB04p02825. Ekström G., Nettles M., Dziewonski A.M., 2012. The Global CMT Project 2004–2010: Centroid-Moment Tensors for 13.017 Earthquakes. Physics of the Earth and Planetary Interiors 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002. Fujita K., Kanamori H., 1981. Double Seismic Zones and Stresses of Intermediate Depth Earthquakes. Geophysical Journal International 66 (1), 131-156. https://doi.org/10.1111/j.1365-246X.1981.tb05950.x. Ghimire S., Kasahara M., 2009. Spatial Variation in Seismotectonics and Stress Conditions across the Kurile and Japan Trenches Inferred from the Analysis of Focal Mechanism Data in Hokkaido, Northern Japan. Journal of Geodynamics 47 (2–3), 153–166. https://doi.org/10.1016/j.jog.2008.07.007. Glennon M.A., Chen W.-P., 1993. Systematics of Deep‐Focus Earthquakes along the Kuril‐Kamchatka Arc and Their Implications on Mantle Dynamics. Journal of Geophysical Research: Solid Earth 98 (B1), 735–769. https://doi.org/10.1029/92JB01742. Hayes G.P., 2018. Slab2 – A Comprehensive Subduction Zone Geometry Model: U.S. Geological Survey data release. https://doi.org/10.5066/F7PV6JNV. Hayes G.P., Wald D.J., Johnson R.L., 2012. Slab1.0: A Three‐Dimensional Model of Global Subduction Zone Geometries. Journal of Geophysical Research: Solid Earth 117 (B1). https://doi.org/10.1029/2011JB008524. Horiuchi S., Koyama J., Izutani Y., Onodera I., Hirasawa T., 1975. Earthquake Generating Stress in the Kurile-Kamchatka Seismic Region Derived from Superposition of P-Wave Initial Motions. The Science Reports of the Tohoku University. Ser. 5. Tohoku Geophysical Journal 23 (2), 67–81. Huang J., Zhao D., 2006. High‐Resolution Mantle Tomography of China and Surrounding Regions. Journal of Geophysical Research: Solid Earth 111 (B9). https://doi.org/10.1029/2005JB004066. Igarashi T., Matsuzawa T., Umino N., Hasegawa A., 2001. Spatial Distribution of Focal Mechanisms for Interplate and Intraplate Earthquakes Associated with the Subducting Pacific Plate beneath the Northeastern Japan Arc: A Triple‐Planed Deep Seismic Zone. Journal of Geophysical Research: Solid Earth 106 (B2), 2177–2191. https://doi.org/10.1029/2000JB900386. Isacks B.L., Oliver J., Sykes L.R., 1968. Seismology and the New Global Tectonics. Journal of Geophysical Research, 73, 5855–5899. https://doi.org/10.1029/JB073i018p05855. Katsumata K., Wada N., Kasahara M., 2003. Newly Imaged Shape of the Deep Seismic Zone within the Subducting Pacific Plate beneath the Hokkaido Corner, Japan‐Kurile Arc‐Arc Junction. Journal of Geophysical Research: Solid Earth 108 (B12). https://doi.org/10.1029/2002JB002175. Хаин В.Е., Ломизе М.Г. Геотектоника с основами геодинамики. М.: Книжный дом «Университет», 2005. 500 c. Kogan M.G., Vasilenko N.F., Frolov D.I., Freymueller J.T., Steblov G.M., Levin B.W., Prytkov A.S., 2011. The Mechanism of Postseismic Deformation Triggered by the 2006–2007 Great Kuril Earthquakes. Geophysical Research Letters 38 (6). https://doi.org/10.1029/2011GL046855. Kubo A., Fukuyama E., Kawa H., Nonomura K., 2002. NIED Seismic Moment Tensor Catalogue for Regional Earthquakes around Japan: Quality Test and Application. Tectonophysics 356 (1), 23–48. https://doi.org/10.1016/S0040-1951(02)00375-X. Lallemand S., 2016. Philippine Sea Plate Inception, Evolution, and Consumption with Special Emphasis on the Early Stages of Izu-Bonin-Mariana Subduction. Progress in Earth and Planetary Science 3 (15). https://doi.org/10.1186/s40645-016-0085-6. Lay T., Ammon C.J., Kanamori H., Kim M.J., Xue L., 2011. Outer Trench-Slope Faulting and the 2011 Mw 9.0 off the Pacific Coast of Tohoku Earthquake. Earth, Planets and Space 63 (37), 713–718. https://doi.org/10.5047/eps.2011.05.006. Полец А.Ю. Напряженно-деформированное состояние зоны глубокофокусных землетрясений региона Японского моря // Геосистемы переходных зон. 2018. Т. 2. № 4. С. 302–311. http://dx.doi.org/10.30730/2541-8912.2018.2.4.302-311. Polets A.Yu., Zlobin T.K., 2014. Estimation of the Stress State of the Earth’s Crust and the Upper Mantle in the Area of the Southern Kuril Islands. Russian Journal of Pacific Geology 8 (2), 126–137. https://doi.org/10.1134/S1819714014020067. Поплавская Л.Н., Рудик М.И., Нагорных Т.В., Сафонов Д.А. Каталог механизмов очагов сильных (М≥6.0) землетрясений Курило-Охотского региона 1964–2009 гг. Владивосток: Дальнаука, 2011. 131 с. Ребецкий Ю.Л. Методы реконструкции тектонических напряжений и сейсмотектонических деформаций на основе современной теории пластичности // Доклады Академии наук. 1999. Т. 365. № 3. С. 392–395. Ребецкий Ю.Л. Развитие метода катакластического анализа сколов для оценки величин тектонических напряжений // Доклады Академии наук. 2003. Т. 388. № 2. С. 237–241. Ребецкий Ю.Л., Полец А.Ю. Напряженное состояние литосферы Японии перед катастрофическим землетрясением Тохоку 11.03.2011 // Геодинамика и тектонофизика. 2014. Т. 5 № 2. C. 469–506. https://doi.org/10.5800/GT-2014-5-2-0137. Родкин М.В., Рундквист Д.В. Геофлюидогеодинамика. Приложение к сейсмологии, тектонике, процессам рудо- и нефтегенеза. Долгопрудный: Интеллект, 2017. 288 с. Сафонов Д.А. Пространственное распределение тектонических напряжений в южной глубокой части Курило-Камчатской зоны субдукции // Геосистемы переходных зон. 2019. Т. 3. № 2. С. 175–188. http://dx.doi.org/10.30730/2541-8912.2019.3.2.175-188. Safonov D.A., Konovalov A.V., Zlobin T.K., 2015. The Urup Earthquake Sequence of 2012–2013. Journal of Volcanology and Seismology 9, 402–411. https://doi.org/10.1134/S074204631506007X. Сафонов Д.А., Нагорных Т.В., Коваленко Н.С. Сейсмичность региона Приамурье и Приморье. Южно-Сахалинск: ИМГиГ ДВО РАН. 2019. 104 с. http://dx.doi.org/10.30730/978-5-6040621-0-4.2019-1. Terakawa T., Matsu’ura M., 2010. The 3‐D Tectonic Stress Fields in and around Japan Inverted from Centroid Moment Tensor Data of Seismic Events. Tectonics 29 (6). https://doi.org/10.1029/2009TC002626. Wada I., He J., Hasegawa A., Nakajima J., 2015. Mantle Wedge Flow Pattern and Thermal Structure in Northeast Japan: Effects of Oblique Subduction and 3-D Slab Geometry. Earth and Planetary Science Letters 426, 76–88. https://doi.org/10.1016/j.epsl.2015.06.021. Zhang H., Thurber C.H., Shelly D., Ide S., Beroza G.C., Hasegawa A., 2004. High-Resolution Subducting-Slab Structure beneath Northern Honshu, Japan, Revealed by Double-Difference Tomography. Geology 32 (4), 361–364. https://doi.org/10.1130/G20261.2. Zlobin T.K., Safonov D.A., Polets A.Y., 2011. Distribution of Earthquakes by the Types of the Source Motions in the Kuril-Okhotsk Region. Doklady Earth Sciences 440, 1410. https://doi.org/10.1134/S1028334X11100096. https://www.gt-crust.ru/jour/article/view/1122 doi:10.5800/GT-2020-11-4-0504 Authors who publish with this Online Publication agree to the following terms:Authors retain copyright and grant the Online Publication right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Online Publication.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Online Publication's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Online Publication.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном сетевом издании, соглашаются на следующее:1. Авторы сохраняют за собой авторские права и предоставляют сетевому изданию право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом издании.2. Авторы имеют право размещать свою работу в сети Интернет на ресурсах, не относящихся к другим издательствам (например, на персональном сайте), в форме и содержании, принятыми издателем для опубликования в сетевом издании, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Geodynamics & Tectonophysics; Том 11, № 4 (2020); 743-755 Геодинамика и тектонофизика; Том 11, № 4 (2020); 743-755 2078-502X глубокофокусное землетрясение Kuril-Kamchatka region Japan seismic focal zone subduction zone tectonic stress field deep-focus earthquake Курило-Камчатский регион Японская сейсмофокальная зона зона субдукции поле тектонических напряжений info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2020 ftjgat https://doi.org/10.5800/GT-2020-11-4-0504 https://doi.org/10.1016/0031-9201(88)90138-0 https://doi.org/10.1029/2001GC000252 https://doi.org/10.1016/j.jog.2014.11.001 https://doi.org/10.1016/S0264-3707(00)00009-0 https://doi.org/10.1111/j.1365-24 2022-07-19T15:37:05Z Earthquake focal mechanisms in the Southern Kuril-Kamchatka and Northern Japan subduction zones were analysed to investigate the features of the tectonic stress field inside the Pacific lithospheric plate subducting into the upper mantle. Earthquake focal mechanism (hypocenter depths of more than 200 km) were taken from the 1966– 2018 NIED, IMGiG FEB RAS and GlobalCMT catalogues. The tectonic stress field was reconstructed by the cataclastic analysis method, using a coordinate system related to the subducting plate. In most parts of the studied seismic focal zone, the axis of the principal compression stress approximately coincides with the direction of the Pacific lithospheric plate subduction beneath the Sea of Okhotsk. It slightly deviates towards the hinge zone separating the studied regions. The principal tension stress axis is most often perpendicular to the plate movement, but less stable in direction. This leads to compression relative to the slab in some parts of the studied regions, and causes shearing in others. The hinge zone is marked by the unstable position of the tension axis and high values of the Lode–Nadai coefficient, corresponding to the conditions of uniaxial compression, while the compression direction remains the same, towards the slab movement. Two more areas of uniaxial compression are located below the Sea of Japan at depths of 400–500 km. Рассмотрены особенности поля тектонических напряжений внутри погружающейся в верхнюю мантию Тихоокеанской литосферной плиты в пределах южной части Курило-Камчатской и северной части Японской зоны субдукции на основе механизмов очагов землетрясений. Привлечены данные доступных каталогов механизмов очагов землетрясений с глубиной гипоцентра более 200 км временного периода 1966–2018 гг. по данным NIED, ИМГиГ ДВО РАН и GlobalCMT. Анализ данных проводился в системе координат, связанной с погружающейся плитой. Реконструкция поля тектонических напряжений выполнена методом катакластического анализа. Показано, что ось главного напряжения сжатия почти на ... Article in Journal/Newspaper Kamchatka Geodynamics & Tectonophysics (E-Journal) Okhotsk Pacific SAD The Journal of Siberian Studies 1 1