id ftjfct:oai:oai.chemicallytech.elpub.ru:article/1773
record_format openpolar
institution Open Polar
collection Fine Chemical Technologies (E-Journal)
op_collection_id ftjfct
language Russian
English
topic N-метил имидазол
characteristic signal
protonation
heterocyclic nitrogen compounds
pyridine
imidazole
N-methylimidazole
характеристический сигнал
протонирование
гетероциклические соединения азота
пиридин
имидазол
spellingShingle N-метил имидазол
characteristic signal
protonation
heterocyclic nitrogen compounds
pyridine
imidazole
N-methylimidazole
характеристический сигнал
протонирование
гетероциклические соединения азота
пиридин
имидазол
D. A. Aleksandrova
T. B. Melamed
E. P. Baberkina
A. A. Fenin
E. S. Osinova
А. E. Kovalenko
R. V. Yakushin
Yu. R. Shaltaeva
V. V. Belyakov
D. I. Zykova
Д. А. Александрова
Т. Б. Меламед
Е. П. Баберкина
А. А. Фенин
Е. С. Осинова
А. Е. Коваленко
Р. В. Якушин
Ю. Р. Шалтаева
В. В. Беляков
Д. И. Зыкова
Ion mobility spectrometry of N-methylimidazole and possibilities of its determination
topic_facet N-метил имидазол
characteristic signal
protonation
heterocyclic nitrogen compounds
pyridine
imidazole
N-methylimidazole
характеристический сигнал
протонирование
гетероциклические соединения азота
пиридин
имидазол
description Objectives. To determine the ion mobility of N-methylimidazole, establish the structure of ions corresponding to characteristic signals, and determine the detection limit of N-methylimidazole on the ion-drift detector Kerber.Methods. Ion mobility spectrometry was used to study the ionization processes. The enthalpies of the reactions of monomer and dimer ions were calculated in the ORCA 4.1.1 software by the B3LYP density functional method with a set of basic functions 6-31G (d, p).Results. The drift time and ion mobility values of N-methylimidazole were determined. A method for mathematical processing of spectra and a program for its implementation was developed. The changing peculiarities of the ion mobility spectrum during measurement at a given time were studied. According to the interpretation of the spectrum signals, the structure of the generated ions was proposed, and the enthalpies of ion formation were determined.Conclusions. The characteristic signal of the N-methylimidazole ion protonated at the nitrogen atom of the pyridine type was revealed. It was found that two signals in the ion mobility spectra of N-methylimidazole correspond to the presence of the monomer and dimer ions. The detection limit of N-methylimidazole on the ion-drift detector Kerber was determined, amounting to 3 pg. Цели. Определение значений ионной подвижности N-метилимидазола. Установление строения ионов, соответствующих характерным сигналам. Определение предела обнаружения N-метилимидазола на ионно-дрейфовом детекторе Кербер.Методы. Метод спектрометрии ионной подвижности был использован для исследования процессов ионизации. Энтальпии реакций мономерных и димерных ионов расчитаны в программе ORCA 4.1.1 методом функционала плотности B3LYP с набором базисных функций 6-31G(d,p).Результаты. Определены значения времени дрейфа и ионной подвижности N-метилимидазола. Разработана методика математической обработки спектров и программа для ее реализации. Изучены особенности изменения характера спектра ионной подвижности в процессе ...
format Article in Journal/Newspaper
author D. A. Aleksandrova
T. B. Melamed
E. P. Baberkina
A. A. Fenin
E. S. Osinova
А. E. Kovalenko
R. V. Yakushin
Yu. R. Shaltaeva
V. V. Belyakov
D. I. Zykova
Д. А. Александрова
Т. Б. Меламед
Е. П. Баберкина
А. А. Фенин
Е. С. Осинова
А. Е. Коваленко
Р. В. Якушин
Ю. Р. Шалтаева
В. В. Беляков
Д. И. Зыкова
author_facet D. A. Aleksandrova
T. B. Melamed
E. P. Baberkina
A. A. Fenin
E. S. Osinova
А. E. Kovalenko
R. V. Yakushin
Yu. R. Shaltaeva
V. V. Belyakov
D. I. Zykova
Д. А. Александрова
Т. Б. Меламед
Е. П. Баберкина
А. А. Фенин
Е. С. Осинова
А. Е. Коваленко
Р. В. Якушин
Ю. Р. Шалтаева
В. В. Беляков
Д. И. Зыкова
author_sort D. A. Aleksandrova
title Ion mobility spectrometry of N-methylimidazole and possibilities of its determination
title_short Ion mobility spectrometry of N-methylimidazole and possibilities of its determination
title_full Ion mobility spectrometry of N-methylimidazole and possibilities of its determination
title_fullStr Ion mobility spectrometry of N-methylimidazole and possibilities of its determination
title_full_unstemmed Ion mobility spectrometry of N-methylimidazole and possibilities of its determination
title_sort ion mobility spectrometry of n-methylimidazole and possibilities of its determination
publisher MIREA – Russian Technological University (RTU MIREA).
publishDate 2022
url https://www.finechem-mirea.ru/jour/article/view/1773
https://doi.org/10.32362/2410-6593-2021-16-6-512-525
genre Orca
genre_facet Orca
op_source Fine Chemical Technologies; Vol 16, No 6 (2021); 512-525
Тонкие химические технологии; Vol 16, No 6 (2021); 512-525
2686-7575
2410-6593
op_relation https://www.finechem-mirea.ru/jour/article/view/1773/1809
https://www.finechem-mirea.ru/jour/article/view/1773/1816
https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1773/516
Eiceman G.A., Kapras Z., Hill H.H. Ion Mobility Spectrometry: 3rd ed. Boca Raton: CRC; 2013. 444 p. https://doi.org/10.1201/b16109
Borsdorf H., Eiceman, G.A. Ion mobility spectrometry: Principles and applications. Appl. Spectrosc. Rev. 2006;41(3):323–375. https://doi.org/10.1080/05704920600663469
Marquez-Sillero I., Aguilera-Herrador E., Cardenas S., Valcarcel M. Ion-mobility spectrometry for environmental analysis. TrAC Trends in Analytical Chemistry. 2011;30(5):677–690. https://doi.org/10.1016/j.trac.2010.12.007
Han H.Y., Wang H.M., Jiang H.H., Stano M., Sabo M., Matejcik S., Chu Y.N. Corona discharge ion mobility spectrometry of ten alcohols. Chinese J. Chem. Phys. 2009;22(6):605–610. https://doi.org/10.1088/16740068/22/06/605-610
Tabrizchi M., ILbeigi V. Detection of explosives by positive corona discharge ion mobility spectrometry. J. Hazard. Mater. 2010;176(1–3):692–696. https://doi.org/10.1016/j.jhazmat.2009.11.087
Jafari M.T., Khayamian T. Direct determination of ammoniacal nitrogen in water samples using corona discharge ion mobility spectrometry. Talanta. 2008;76(5):1189–1193. https://doi.org/10.1016/j.talanta.2008.05.028
Jafari M.T., Khayamian T., Shaer V., Zarei N. Determination of veterinary drug residues in chicken meat using corona discharge ion mobility spectrometry. Anal. Chim. Acta. 2007;581(1):147–153. https://doi.org/10.1016/j.aca.2006.08.005
Hashemian Z., Mardihallaj A., Khayamian T. Analysis of biogenic amines using corona discharge ion mobility spectrometry. Talanta. 2010;81(3):1081–1087. https://doi.org/10.1016/j.talanta.2010.02.001
Mäkinen M.A., Anttalainen O.A., Sillanpää M.E. Ion mobility spectrometry and its applications in detection of chemical warfare agents. Anal. Chem. 2010;82(23):9594–9600. https://doi.org/10.1021/ac100931n
Александрова Д. А., Меламед Т. Б., Баберкина Е. П., Коваленко А. Е., Кузнецов Вл. Вит., Кузнецов Вит. Вл., Фенин А. А., Шалтаева Ю. Р., Беляков В. В. Спектрометрия ионной подвижности имидазола и возможности его определения. Журн. аналит. химии. 2021;76(11):989–996. https://doi.org/10.31857/S0044450221110025
Lutz P. Benzimidazole and its derivatives – from fungicides to designer drugs. A new occupational and environmental hazards. Medycyna Pracy. 2012;63(4):505–513.
Schoeder C., Hess C., Madea B., et al. Pharmacological evaluation of new constituents of “Spice”: synthetic cannabinoids based on indole, indazole, benzimidazole and carbazole scaffolds. Forensic Toxicol. 2018;36:385–403. https://doi.org/10.1007/s11419-018-0415-z
Grishin S.S., Negru K.I., Baberkina E.P., Kovalenko A.E., Gushchina A.A., Aleksandrova D.A., Shutova Y.E., Zharikov A.P., Dorskaya E.V., Shaltaeva Y.R., Belyakov V.V., Golovin A.V., Gromov E.A., Matusko M.A., Khamraev V.F. The influence of chemical structure of nitrogen-containing heterocyclic compounds on the character of ion mobility spectra. J. Phys.: Conf. Series. 2019;498(1):012036. https://doi.org/10.1088/1757-899X/498/1/012036
Александрова Д.А., Бабёркина Е.П., Гришин С.С., Гущина А.А., Курбанова Д.М., Трефилова В.В., Коваленко А.Е., Шалтаева Ю.Р., Беляков В.В. Исследование спектров ионной подвижности азотсодержащих гетероциклов на ионно-дрейфовом детекторе «Кербер». Тезисы докладов ХХII Всероссийской конференции молодых ученых-химиков (с международным участием). Нижний Новгород; 2019. С. 277.
Александрова Д.А., Бабёркина, Е.П., Дубкина Е.А., Коваленко А.Е., Шалтаева Ю.Р., Беляков В.В. Исследование спектров ионной подвижности ароматических азотсодержащих гетероциклических соединений на ионно-дрейфовом детекторе «Кербер». В: Актуальные аспекты химической технологии биологически активных веществ: сборник научных трудов. Москва; 2020. С. 34.
Schofield K., Grim-mett M.R., Keene B.R.T. Heteroaromatic Nitrogen Compounds: The Azoles. Cambridge: Cambridge University Press; 1976. 437 p. 17. Joule J.A., Mills K. Heterocyclic Chemistry, 4th ed. Oxford, U.K.: Blackwell Science; 2000. 608 p.
https://www.finechem-mirea.ru/jour/article/view/1773
doi:10.32362/2410-6593-2021-16-6-512-525
op_rights Authors who wish to publish their work in this journal agree to the following terms:Authors retain the copyright and grant the journal the right of first publication in print and online. The is distributed licensed under the Creative Commons Attribution License, which allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with a proper acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).LICENSE AGREEMENT (public offer)In accordance with Article 437 of the Civil Code of the Russian Federation, this document is publicly available, which is addressed to an indefinite circle of adults and capable individuals.Terms and DefinitionsA public offer – compliance with all essential conditions – this is a proposal from which the will of the person is seen, the division of the proposal, the conclusion of an agreement on the proposal of conditions with anyone who responds.The work – the creative work created by the Author (Authors) – an article/paper.Publisher – the publisher of the Tonkie Khimicheskie Tekhnologii [Fine Chemical Technologies] journal – MIREA – Russian Technological University (RTU MIREA). Address: 78, Vernadskogo pr., Moscow, 119454 Russian Federation. Phone: +7 499 215-65-65.License Agreement is an agreement under which the right to use the results of intellectual property is provided (copyright articles).Website – the website of the Tonkie Khimicheskie Tekhnologii [Fine Chem
op_doi https://doi.org/10.32362/2410-6593-2021-16-6-512-52510.1201/b1610910.1080/0570492060066346910.1016/j.trac.2010.12.00710.1088/16740068/22/06/605-61010.1016/j.jhazmat.2009.11.08710.1016/j.talanta.2008.05.02810.1016/j.aca.2006.08.00510.1016/j.talanta.2010.02
container_title Fine Chemical Technologies
container_volume 16
container_issue 6
container_start_page 512
op_container_end_page 525
_version_ 1766161407879938048
spelling ftjfct:oai:oai.chemicallytech.elpub.ru:article/1773 2023-05-15T17:53:42+02:00 Ion mobility spectrometry of N-methylimidazole and possibilities of its determination Спектрометрия ионной подвижности N-метилимидазола и возможности его определения D. A. Aleksandrova T. B. Melamed E. P. Baberkina A. A. Fenin E. S. Osinova А. E. Kovalenko R. V. Yakushin Yu. R. Shaltaeva V. V. Belyakov D. I. Zykova Д. А. Александрова Т. Б. Меламед Е. П. Баберкина А. А. Фенин Е. С. Осинова А. Е. Коваленко Р. В. Якушин Ю. Р. Шалтаева В. В. Беляков Д. И. Зыкова 2022-01-27 application/pdf https://www.finechem-mirea.ru/jour/article/view/1773 https://doi.org/10.32362/2410-6593-2021-16-6-512-525 rus eng rus eng MIREA – Russian Technological University (RTU MIREA). https://www.finechem-mirea.ru/jour/article/view/1773/1809 https://www.finechem-mirea.ru/jour/article/view/1773/1816 https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1773/516 Eiceman G.A., Kapras Z., Hill H.H. Ion Mobility Spectrometry: 3rd ed. Boca Raton: CRC; 2013. 444 p. https://doi.org/10.1201/b16109 Borsdorf H., Eiceman, G.A. Ion mobility spectrometry: Principles and applications. Appl. Spectrosc. Rev. 2006;41(3):323–375. https://doi.org/10.1080/05704920600663469 Marquez-Sillero I., Aguilera-Herrador E., Cardenas S., Valcarcel M. Ion-mobility spectrometry for environmental analysis. TrAC Trends in Analytical Chemistry. 2011;30(5):677–690. https://doi.org/10.1016/j.trac.2010.12.007 Han H.Y., Wang H.M., Jiang H.H., Stano M., Sabo M., Matejcik S., Chu Y.N. Corona discharge ion mobility spectrometry of ten alcohols. Chinese J. Chem. Phys. 2009;22(6):605–610. https://doi.org/10.1088/16740068/22/06/605-610 Tabrizchi M., ILbeigi V. Detection of explosives by positive corona discharge ion mobility spectrometry. J. Hazard. Mater. 2010;176(1–3):692–696. https://doi.org/10.1016/j.jhazmat.2009.11.087 Jafari M.T., Khayamian T. Direct determination of ammoniacal nitrogen in water samples using corona discharge ion mobility spectrometry. Talanta. 2008;76(5):1189–1193. https://doi.org/10.1016/j.talanta.2008.05.028 Jafari M.T., Khayamian T., Shaer V., Zarei N. Determination of veterinary drug residues in chicken meat using corona discharge ion mobility spectrometry. Anal. Chim. Acta. 2007;581(1):147–153. https://doi.org/10.1016/j.aca.2006.08.005 Hashemian Z., Mardihallaj A., Khayamian T. Analysis of biogenic amines using corona discharge ion mobility spectrometry. Talanta. 2010;81(3):1081–1087. https://doi.org/10.1016/j.talanta.2010.02.001 Mäkinen M.A., Anttalainen O.A., Sillanpää M.E. Ion mobility spectrometry and its applications in detection of chemical warfare agents. Anal. Chem. 2010;82(23):9594–9600. https://doi.org/10.1021/ac100931n Александрова Д. А., Меламед Т. Б., Баберкина Е. П., Коваленко А. Е., Кузнецов Вл. Вит., Кузнецов Вит. Вл., Фенин А. А., Шалтаева Ю. Р., Беляков В. В. Спектрометрия ионной подвижности имидазола и возможности его определения. Журн. аналит. химии. 2021;76(11):989–996. https://doi.org/10.31857/S0044450221110025 Lutz P. Benzimidazole and its derivatives – from fungicides to designer drugs. A new occupational and environmental hazards. Medycyna Pracy. 2012;63(4):505–513. Schoeder C., Hess C., Madea B., et al. Pharmacological evaluation of new constituents of “Spice”: synthetic cannabinoids based on indole, indazole, benzimidazole and carbazole scaffolds. Forensic Toxicol. 2018;36:385–403. https://doi.org/10.1007/s11419-018-0415-z Grishin S.S., Negru K.I., Baberkina E.P., Kovalenko A.E., Gushchina A.A., Aleksandrova D.A., Shutova Y.E., Zharikov A.P., Dorskaya E.V., Shaltaeva Y.R., Belyakov V.V., Golovin A.V., Gromov E.A., Matusko M.A., Khamraev V.F. The influence of chemical structure of nitrogen-containing heterocyclic compounds on the character of ion mobility spectra. J. Phys.: Conf. Series. 2019;498(1):012036. https://doi.org/10.1088/1757-899X/498/1/012036 Александрова Д.А., Бабёркина Е.П., Гришин С.С., Гущина А.А., Курбанова Д.М., Трефилова В.В., Коваленко А.Е., Шалтаева Ю.Р., Беляков В.В. Исследование спектров ионной подвижности азотсодержащих гетероциклов на ионно-дрейфовом детекторе «Кербер». Тезисы докладов ХХII Всероссийской конференции молодых ученых-химиков (с международным участием). Нижний Новгород; 2019. С. 277. Александрова Д.А., Бабёркина, Е.П., Дубкина Е.А., Коваленко А.Е., Шалтаева Ю.Р., Беляков В.В. Исследование спектров ионной подвижности ароматических азотсодержащих гетероциклических соединений на ионно-дрейфовом детекторе «Кербер». В: Актуальные аспекты химической технологии биологически активных веществ: сборник научных трудов. Москва; 2020. С. 34. Schofield K., Grim-mett M.R., Keene B.R.T. Heteroaromatic Nitrogen Compounds: The Azoles. Cambridge: Cambridge University Press; 1976. 437 p. 17. Joule J.A., Mills K. Heterocyclic Chemistry, 4th ed. Oxford, U.K.: Blackwell Science; 2000. 608 p. https://www.finechem-mirea.ru/jour/article/view/1773 doi:10.32362/2410-6593-2021-16-6-512-525 Authors who wish to publish their work in this journal agree to the following terms:Authors retain the copyright and grant the journal the right of first publication in print and online. The is distributed licensed under the Creative Commons Attribution License, which allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with a proper acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).LICENSE AGREEMENT (public offer)In accordance with Article 437 of the Civil Code of the Russian Federation, this document is publicly available, which is addressed to an indefinite circle of adults and capable individuals.Terms and DefinitionsA public offer – compliance with all essential conditions – this is a proposal from which the will of the person is seen, the division of the proposal, the conclusion of an agreement on the proposal of conditions with anyone who responds.The work – the creative work created by the Author (Authors) – an article/paper.Publisher – the publisher of the Tonkie Khimicheskie Tekhnologii [Fine Chemical Technologies] journal – MIREA – Russian Technological University (RTU MIREA). Address: 78, Vernadskogo pr., Moscow, 119454 Russian Federation. Phone: +7 499 215-65-65.License Agreement is an agreement under which the right to use the results of intellectual property is provided (copyright articles).Website – the website of the Tonkie Khimicheskie Tekhnologii [Fine Chem Fine Chemical Technologies; Vol 16, No 6 (2021); 512-525 Тонкие химические технологии; Vol 16, No 6 (2021); 512-525 2686-7575 2410-6593 N-метил имидазол characteristic signal protonation heterocyclic nitrogen compounds pyridine imidazole N-methylimidazole характеристический сигнал протонирование гетероциклические соединения азота пиридин имидазол info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2022 ftjfct https://doi.org/10.32362/2410-6593-2021-16-6-512-52510.1201/b1610910.1080/0570492060066346910.1016/j.trac.2010.12.00710.1088/16740068/22/06/605-61010.1016/j.jhazmat.2009.11.08710.1016/j.talanta.2008.05.02810.1016/j.aca.2006.08.00510.1016/j.talanta.2010.02 2023-04-10T15:57:34Z Objectives. To determine the ion mobility of N-methylimidazole, establish the structure of ions corresponding to characteristic signals, and determine the detection limit of N-methylimidazole on the ion-drift detector Kerber.Methods. Ion mobility spectrometry was used to study the ionization processes. The enthalpies of the reactions of monomer and dimer ions were calculated in the ORCA 4.1.1 software by the B3LYP density functional method with a set of basic functions 6-31G (d, p).Results. The drift time and ion mobility values of N-methylimidazole were determined. A method for mathematical processing of spectra and a program for its implementation was developed. The changing peculiarities of the ion mobility spectrum during measurement at a given time were studied. According to the interpretation of the spectrum signals, the structure of the generated ions was proposed, and the enthalpies of ion formation were determined.Conclusions. The characteristic signal of the N-methylimidazole ion protonated at the nitrogen atom of the pyridine type was revealed. It was found that two signals in the ion mobility spectra of N-methylimidazole correspond to the presence of the monomer and dimer ions. The detection limit of N-methylimidazole on the ion-drift detector Kerber was determined, amounting to 3 pg. Цели. Определение значений ионной подвижности N-метилимидазола. Установление строения ионов, соответствующих характерным сигналам. Определение предела обнаружения N-метилимидазола на ионно-дрейфовом детекторе Кербер.Методы. Метод спектрометрии ионной подвижности был использован для исследования процессов ионизации. Энтальпии реакций мономерных и димерных ионов расчитаны в программе ORCA 4.1.1 методом функционала плотности B3LYP с набором базисных функций 6-31G(d,p).Результаты. Определены значения времени дрейфа и ионной подвижности N-метилимидазола. Разработана методика математической обработки спектров и программа для ее реализации. Изучены особенности изменения характера спектра ионной подвижности в процессе ... Article in Journal/Newspaper Orca Fine Chemical Technologies (E-Journal) Fine Chemical Technologies 16 6 512 525