id ftjeltech:oai:oai.radioelectronics.elpub.ru:article/799
record_format openpolar
institution Open Polar
collection Journal of the Russian Universities. Radioelectronics
op_collection_id ftjeltech
language Russian
topic квазиоптическое управление
mechanoelectrical beam steering
quasi-optical beam control
механо-электрическое сканирование
spellingShingle квазиоптическое управление
mechanoelectrical beam steering
quasi-optical beam control
механо-электрическое сканирование
A. V. Stankovsky
S. V. Polenga
Ye. A. Strigova
Yu. P. Salomatov
А. В. Станковский
С. В. Поленга
Е. А. Стригова
Ю. П. Саломатов
Antenna Systems with Wide-Angle Mechanoelectrical Beam Steering
topic_facet квазиоптическое управление
mechanoelectrical beam steering
quasi-optical beam control
механо-электрическое сканирование
description Introduction. The active development of satellite communication networks determines the need for new antenna systems for ground terminals. The Sphere Federal program implies the commissioning of new satellite constellations for communication and remote sensing of the Earth. The Skif (providing broadband Internet access) and Express-RV (providing the Internet and communications for Arctic) satellite constellations are not geostationary, thus requiring constant satellite tracking even for stationary terminals. Deflecting structures operating on the principle of quasi-optical beam control make it possible to develop scanning antenna systems for organizing continuous satellite communications. Aim. Investigation of various types of dielectric structures for radiation pattern deflection and scanning antenna systems on their basis, as well as identification of a configuration with improved characteristics compared to the ideal structure in the shape of a dielectric wedge. Materials and methods. Mathematical modeling, electrodynamic modeling using CAD by the finite element method and the finite integration method, as well as an experimental study of an antenna system prototype in an anechoicchamber by measuring methods in the far-field and near-field of the antenna. Results. Electrodynamic simulation was carried out for three types of dielectric structures, analogues of a dielectric wedge, including a structure assembled from various dielectrics of fixed sizes with different dielectric constants; a structure of triangular dielectric plates; and a perforated dielectric structure. In addition, scanning antenna systems based on the presented configurations were analyzed. Radiation patterns were obtained for all structural types for various rotation angles of the deflecting systems. The structure assembled from various dielectrics of fixed sizes with different dielectric constants was found to possess the most optimal characteristics. This structure was used to develop a model for experimental confirmation of the conducted ...
author2 The study was carried out as part of the state task of the Siberian Federal University (number FSRZ-2023-0008)
Исследование выполнено в рамках государственного задания ФГАОУ ВО "Сибирский федеральный университет" (номер FSRZ-2023-0008)
format Article in Journal/Newspaper
author A. V. Stankovsky
S. V. Polenga
Ye. A. Strigova
Yu. P. Salomatov
А. В. Станковский
С. В. Поленга
Е. А. Стригова
Ю. П. Саломатов
author_facet A. V. Stankovsky
S. V. Polenga
Ye. A. Strigova
Yu. P. Salomatov
А. В. Станковский
С. В. Поленга
Е. А. Стригова
Ю. П. Саломатов
author_sort A. V. Stankovsky
title Antenna Systems with Wide-Angle Mechanoelectrical Beam Steering
title_short Antenna Systems with Wide-Angle Mechanoelectrical Beam Steering
title_full Antenna Systems with Wide-Angle Mechanoelectrical Beam Steering
title_fullStr Antenna Systems with Wide-Angle Mechanoelectrical Beam Steering
title_full_unstemmed Antenna Systems with Wide-Angle Mechanoelectrical Beam Steering
title_sort antenna systems with wide-angle mechanoelectrical beam steering
publisher Saint Petersburg Electrotechnical University
publishDate 2023
url https://re.eltech.ru/jour/article/view/799
https://doi.org/10.32603/1993-8985-2023-26-5-50-62
genre Arctic
genre_facet Arctic
op_source Journal of the Russian Universities. Radioelectronics; Том 26, № 5 (2023); 50-62
Известия высших учебных заведений России. Радиоэлектроника; Том 26, № 5 (2023); 50-62
2658-4794
1993-8985
op_relation https://re.eltech.ru/jour/article/view/799/712
Low cost Ku-band electronic steerable array antenna for mobile satellite communications / S. Vaccaro, D. Llorens del Río, J. Padilla, R. Baggen // Proc. of the 5 th European Conf. on Antennas and Propagation (EUCAP). Rome, Italy. 11–15 Apr. 2011. IEEE, 2011. P. 471–478.
Low-profile scalable phased array antenna at Kuband for mobile satellite communications / K. Y. Kapusuz, Y. Şen, M. Bulut, İ. Karadede, U. Oğuz // 2016 IEEE Intern. Symp. on Phased Array Systems and Technology (PAST). Waltham, USA. 18–21 Oct. 2016. IEEE, 2016. P. 1–4. doi:10.1109/ARRAY.2016.7832648
Panzner B., Joestingmeier A., Omar A. Ka-band dielectric lens antenna for resolution enhancement of a GPR // 2008 8 th Intern. Symp. on Antennas, Propagation and EM Theory. Kunming, China. 02–05 Nov. 2008. IEEE, 2008. P. 31–34. doi:10.1109/ISAPE.2008.4735132
Ravishankar S. Analysis of shaped beam dielectric lens antennas for mobile broadband applications // IWAT 2005. IEEE Intern. Workshop on Antenna Technology: Small Antennas and Novel Metamaterials. Singapore. 07–09 March 2005. IEEE, 2005. P. 539–542. doi:10.1109/IWAT.2005.1461135
Wang Z. X., Dou W. B. Dielectric lens antennas designed for millimeter wave application // 2006 Joint 31 st Intern. Conf. on Infrared Millimeter Waves and 14 th Intern. Conf. on Teraherz Electronics. Shanghai, China. 18–22 Sept. 2006. IEEE, 2006. P. 376. doi:10.1109/ICIMW.2006.368584
Ryazantsev R. O., Salomatov Yu. P., Sugak M. I. Concave spherical feed array for Luneberg lens // 2013 Intern. Siberian Conf. on Control and Communications (SIBCON). Krasnoyarsk, Russia. 12–13 Sept. 2013. IEEE, 2013. P. 1–4. doi:10.1109/SIBCON.2013.6693605
Griffiths H. D., Khan M. R. Antenna beam steering technique using dielectric wedges // IEE Proc. H. Microwaves, Antennas and Propagation. 1989. Vol. 136, iss. 2. P. 126–131.
Ghate P., Bredow J. Quasi-Optical Beamforming using Horizontal Dielectric Wedges // 2021 IEEE Intern. Symp. on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). IEEE, 2021. P. 505–506. doi:10.1109/APS/URSI47566.2021.9704172
Дисковая антенна с широкоугольным механо-электрическим сканированием / А. В. Станковский, А. Д. Немшон, С. В. Поленга, Ю. П. Саломатов // Электронные средства и системы управления : материалы докл. Междунар. науч.-практ. конф. Томск, 2014. № 1. С. 149–153.
Gagnon N., Petosa A. Using Rotatable Planar Phase Shifting Surfaces to Steer a High-Gain Beam // IEEE transactions on antennas and propagation. 2013. Vol. 61, iss. 6. P. 3086–3092. doi:10.1109/TAP.2013.2253298
Beam-Scanning Antenna Based on Near-Electric Field Phase Transformation and Refraction of Electromagnetic Wave Through Dielectric Structures / M. U. Afzal, L. Matekovits, K. P. Esselle, A. Lalbakhsh // IEEE Access. 2020. Vol. 8. P. 199242–199253. doi:10.1109/ACCESS.2020.3033284
Alexandrin A. M., Ryazantsev R. O., Salomatov Yu. P. Numerical optimization of the discrete Mikaelian lens // 2016 Intern. Siberian Conf. on Control and Communications (SIBCON). IEEE, 2016. P. 1–3. doi:10.1109/SIBCON.2016.7491859
Gagnon N., Petosa A., McNamara D. A. Thin microwave quasi-transparent phase-shifting surface (PSS) // IEEE transactions on antennas and propagation. 2010. Vol. 58, iss. 4. P. 1193–1201. doi:10.1109/TAP.2010.2041150
Array of hexagonal Fresnel zone plate lens antennas / A. Petosa, S. Thirakoune, I. V. Minin, O. V. Minin // Electron. Lett. 2006. Vol. 42, № 15. P. 834–836. doi:10.1049/el:20061258
Khalaj-Amirhosseini M. Microwave Filters using Waveguides Filled by Multi-Layer Dielectric // 2006 7 th Intern. Symp. on Antennas, Propagation & EM Theory. Guilin, China. 26–29 Oct. 2006. IEEE, 2006. P. 1–3. doi:10.1109/ISAPE.2006.353299
AlAjmi A. R., Saed M. A. Perforated dielectric surface wave antenna with directive radiation pattern // 2016 IEEE Conf. on Antenna Measurements & Applications (CAMA). Syracuse, USA. 23–27 Oct. 2016. IEEE, 2016. P. 1–3. doi:10.1109/CAMA.2016.7815763
Mrnka M., Raida Z. An Effective Permittivity Tensor of Cylindrically Perforated Dielectrics // IEEE Antennas and Wireless Propagation Letters. 2018. Vol. 17, iss. 1. P. 66–69. doi:10.1109/LAWP.2017.2774448
Implementation of antenna near-field scanning without using probe position sensors / A. S. Ivanov, K. V. Lemberg, S. V. Polenga, R. M. Krylov, Yu. P. Salomatov // Intern. Siberian Conf. on Control and Communications (SIBCON). Omsk, Russia. 21–23 May 2015. IEEE, 2015. P. 1–3. doi:10.1109/SIBCON.2015.7147334
Munk B. A. Frequency Selective Surfaces: Theory and Design. New York: Wiley-Interscience, 2000. 440 p.
AL-Joumayly M. A., Behdad N. A generalized method for synthesizing low-profile, band-pass frequency selective surfaces with non-resonant constituting elements // IEEE transactions on antennas and propagation. 2010. Vol. 58, iss. 12. P. 4033–4041. doi:10.1109/TAP.2010.2078474
White C. R., Ebling J. P., Rebeiz G. A wide-scan printed planar K-band microwave lens // 2005 IEEE Antennas and Propagation Society Intern. Symp. 2005. Washington, USA, 03–08 July 2005. IEEE, 2005. Vol. 4. P. 313–316. doi:10.1109/APS.2005.1552652
Singh N., Choure K. K., Kumari M. A Survey on Free-Standing Phase Correcting gain enhancement Devices // Intern. J. of Scientific & Engineering Research. 2013. Vol. 4, iss. 7. P. 109–115.
https://re.eltech.ru/jour/article/view/799
doi:10.32603/1993-8985-2023-26-5-50-62
op_rights Any authors publishing their work in this journal agree to the following:The authors reserve the copyright to the work and grant the journal the right of first publication of the work under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory preservation of references to the authors of the original work and the original publication in this journal.The authors reserve the right to conclude separate contractual arrangements regarding the non-exclusive distribution of the work version in the form published here (for example, posting it in the respective institute’s repository, publication in a book), with reference to its original publication in this journal.Authors have the right to post their work on the Internet (for example, in the institute’s repository or personal website) before and during the process of reviewing it by this journal, as this can lead to a productive discussion and more references to this work (See The Effect of Open Access ).
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Ac
op_doi https://doi.org/10.32603/1993-8985-2023-26-5-50-6210.1109/ARRAY.2016.783264810.1109/ISAPE.2008.473513210.1109/IWAT.2005.146113510.1109/ICIMW.2006.36858410.1109/SIBCON.2013.669360510.1109/APS/URSI47566.2021.970417210.1109/TAP.2013.225329810.1109/ACCESS.202
container_title Ocean Science
container_volume 19
container_issue 6
container_start_page 1773
op_container_end_page 1789
_version_ 1786829911169695744
spelling ftjeltech:oai:oai.radioelectronics.elpub.ru:article/799 2023-12-31T10:04:09+01:00 Antenna Systems with Wide-Angle Mechanoelectrical Beam Steering Антенные системы с широкоугольным механоэлектрическим сканированием A. V. Stankovsky S. V. Polenga Ye. A. Strigova Yu. P. Salomatov А. В. Станковский С. В. Поленга Е. А. Стригова Ю. П. Саломатов The study was carried out as part of the state task of the Siberian Federal University (number FSRZ-2023-0008) Исследование выполнено в рамках государственного задания ФГАОУ ВО "Сибирский федеральный университет" (номер FSRZ-2023-0008) 2023-11-28 application/pdf https://re.eltech.ru/jour/article/view/799 https://doi.org/10.32603/1993-8985-2023-26-5-50-62 rus rus Saint Petersburg Electrotechnical University https://re.eltech.ru/jour/article/view/799/712 Low cost Ku-band electronic steerable array antenna for mobile satellite communications / S. Vaccaro, D. Llorens del Río, J. Padilla, R. Baggen // Proc. of the 5 th European Conf. on Antennas and Propagation (EUCAP). Rome, Italy. 11–15 Apr. 2011. IEEE, 2011. P. 471–478. Low-profile scalable phased array antenna at Kuband for mobile satellite communications / K. Y. Kapusuz, Y. Şen, M. Bulut, İ. Karadede, U. Oğuz // 2016 IEEE Intern. Symp. on Phased Array Systems and Technology (PAST). Waltham, USA. 18–21 Oct. 2016. IEEE, 2016. P. 1–4. doi:10.1109/ARRAY.2016.7832648 Panzner B., Joestingmeier A., Omar A. Ka-band dielectric lens antenna for resolution enhancement of a GPR // 2008 8 th Intern. Symp. on Antennas, Propagation and EM Theory. Kunming, China. 02–05 Nov. 2008. IEEE, 2008. P. 31–34. doi:10.1109/ISAPE.2008.4735132 Ravishankar S. Analysis of shaped beam dielectric lens antennas for mobile broadband applications // IWAT 2005. IEEE Intern. Workshop on Antenna Technology: Small Antennas and Novel Metamaterials. Singapore. 07–09 March 2005. IEEE, 2005. P. 539–542. doi:10.1109/IWAT.2005.1461135 Wang Z. X., Dou W. B. Dielectric lens antennas designed for millimeter wave application // 2006 Joint 31 st Intern. Conf. on Infrared Millimeter Waves and 14 th Intern. Conf. on Teraherz Electronics. Shanghai, China. 18–22 Sept. 2006. IEEE, 2006. P. 376. doi:10.1109/ICIMW.2006.368584 Ryazantsev R. O., Salomatov Yu. P., Sugak M. I. Concave spherical feed array for Luneberg lens // 2013 Intern. Siberian Conf. on Control and Communications (SIBCON). Krasnoyarsk, Russia. 12–13 Sept. 2013. IEEE, 2013. P. 1–4. doi:10.1109/SIBCON.2013.6693605 Griffiths H. D., Khan M. R. Antenna beam steering technique using dielectric wedges // IEE Proc. H. Microwaves, Antennas and Propagation. 1989. Vol. 136, iss. 2. P. 126–131. Ghate P., Bredow J. Quasi-Optical Beamforming using Horizontal Dielectric Wedges // 2021 IEEE Intern. Symp. on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). IEEE, 2021. P. 505–506. doi:10.1109/APS/URSI47566.2021.9704172 Дисковая антенна с широкоугольным механо-электрическим сканированием / А. В. Станковский, А. Д. Немшон, С. В. Поленга, Ю. П. Саломатов // Электронные средства и системы управления : материалы докл. Междунар. науч.-практ. конф. Томск, 2014. № 1. С. 149–153. Gagnon N., Petosa A. Using Rotatable Planar Phase Shifting Surfaces to Steer a High-Gain Beam // IEEE transactions on antennas and propagation. 2013. Vol. 61, iss. 6. P. 3086–3092. doi:10.1109/TAP.2013.2253298 Beam-Scanning Antenna Based on Near-Electric Field Phase Transformation and Refraction of Electromagnetic Wave Through Dielectric Structures / M. U. Afzal, L. Matekovits, K. P. Esselle, A. Lalbakhsh // IEEE Access. 2020. Vol. 8. P. 199242–199253. doi:10.1109/ACCESS.2020.3033284 Alexandrin A. M., Ryazantsev R. O., Salomatov Yu. P. Numerical optimization of the discrete Mikaelian lens // 2016 Intern. Siberian Conf. on Control and Communications (SIBCON). IEEE, 2016. P. 1–3. doi:10.1109/SIBCON.2016.7491859 Gagnon N., Petosa A., McNamara D. A. Thin microwave quasi-transparent phase-shifting surface (PSS) // IEEE transactions on antennas and propagation. 2010. Vol. 58, iss. 4. P. 1193–1201. doi:10.1109/TAP.2010.2041150 Array of hexagonal Fresnel zone plate lens antennas / A. Petosa, S. Thirakoune, I. V. Minin, O. V. Minin // Electron. Lett. 2006. Vol. 42, № 15. P. 834–836. doi:10.1049/el:20061258 Khalaj-Amirhosseini M. Microwave Filters using Waveguides Filled by Multi-Layer Dielectric // 2006 7 th Intern. Symp. on Antennas, Propagation & EM Theory. Guilin, China. 26–29 Oct. 2006. IEEE, 2006. P. 1–3. doi:10.1109/ISAPE.2006.353299 AlAjmi A. R., Saed M. A. Perforated dielectric surface wave antenna with directive radiation pattern // 2016 IEEE Conf. on Antenna Measurements & Applications (CAMA). Syracuse, USA. 23–27 Oct. 2016. IEEE, 2016. P. 1–3. doi:10.1109/CAMA.2016.7815763 Mrnka M., Raida Z. An Effective Permittivity Tensor of Cylindrically Perforated Dielectrics // IEEE Antennas and Wireless Propagation Letters. 2018. Vol. 17, iss. 1. P. 66–69. doi:10.1109/LAWP.2017.2774448 Implementation of antenna near-field scanning without using probe position sensors / A. S. Ivanov, K. V. Lemberg, S. V. Polenga, R. M. Krylov, Yu. P. Salomatov // Intern. Siberian Conf. on Control and Communications (SIBCON). Omsk, Russia. 21–23 May 2015. IEEE, 2015. P. 1–3. doi:10.1109/SIBCON.2015.7147334 Munk B. A. Frequency Selective Surfaces: Theory and Design. New York: Wiley-Interscience, 2000. 440 p. AL-Joumayly M. A., Behdad N. A generalized method for synthesizing low-profile, band-pass frequency selective surfaces with non-resonant constituting elements // IEEE transactions on antennas and propagation. 2010. Vol. 58, iss. 12. P. 4033–4041. doi:10.1109/TAP.2010.2078474 White C. R., Ebling J. P., Rebeiz G. A wide-scan printed planar K-band microwave lens // 2005 IEEE Antennas and Propagation Society Intern. Symp. 2005. Washington, USA, 03–08 July 2005. IEEE, 2005. Vol. 4. P. 313–316. doi:10.1109/APS.2005.1552652 Singh N., Choure K. K., Kumari M. A Survey on Free-Standing Phase Correcting gain enhancement Devices // Intern. J. of Scientific & Engineering Research. 2013. Vol. 4, iss. 7. P. 109–115. https://re.eltech.ru/jour/article/view/799 doi:10.32603/1993-8985-2023-26-5-50-62 Any authors publishing their work in this journal agree to the following:The authors reserve the copyright to the work and grant the journal the right of first publication of the work under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory preservation of references to the authors of the original work and the original publication in this journal.The authors reserve the right to conclude separate contractual arrangements regarding the non-exclusive distribution of the work version in the form published here (for example, posting it in the respective institute’s repository, publication in a book), with reference to its original publication in this journal.Authors have the right to post their work on the Internet (for example, in the institute’s repository or personal website) before and during the process of reviewing it by this journal, as this can lead to a productive discussion and more references to this work (See The Effect of Open Access ). Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Ac Journal of the Russian Universities. Radioelectronics; Том 26, № 5 (2023); 50-62 Известия высших учебных заведений России. Радиоэлектроника; Том 26, № 5 (2023); 50-62 2658-4794 1993-8985 квазиоптическое управление mechanoelectrical beam steering quasi-optical beam control механо-электрическое сканирование info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2023 ftjeltech https://doi.org/10.32603/1993-8985-2023-26-5-50-6210.1109/ARRAY.2016.783264810.1109/ISAPE.2008.473513210.1109/IWAT.2005.146113510.1109/ICIMW.2006.36858410.1109/SIBCON.2013.669360510.1109/APS/URSI47566.2021.970417210.1109/TAP.2013.225329810.1109/ACCESS.202 2023-12-05T17:56:03Z Introduction. The active development of satellite communication networks determines the need for new antenna systems for ground terminals. The Sphere Federal program implies the commissioning of new satellite constellations for communication and remote sensing of the Earth. The Skif (providing broadband Internet access) and Express-RV (providing the Internet and communications for Arctic) satellite constellations are not geostationary, thus requiring constant satellite tracking even for stationary terminals. Deflecting structures operating on the principle of quasi-optical beam control make it possible to develop scanning antenna systems for organizing continuous satellite communications. Aim. Investigation of various types of dielectric structures for radiation pattern deflection and scanning antenna systems on their basis, as well as identification of a configuration with improved characteristics compared to the ideal structure in the shape of a dielectric wedge. Materials and methods. Mathematical modeling, electrodynamic modeling using CAD by the finite element method and the finite integration method, as well as an experimental study of an antenna system prototype in an anechoicchamber by measuring methods in the far-field and near-field of the antenna. Results. Electrodynamic simulation was carried out for three types of dielectric structures, analogues of a dielectric wedge, including a structure assembled from various dielectrics of fixed sizes with different dielectric constants; a structure of triangular dielectric plates; and a perforated dielectric structure. In addition, scanning antenna systems based on the presented configurations were analyzed. Radiation patterns were obtained for all structural types for various rotation angles of the deflecting systems. The structure assembled from various dielectrics of fixed sizes with different dielectric constants was found to possess the most optimal characteristics. This structure was used to develop a model for experimental confirmation of the conducted ... Article in Journal/Newspaper Arctic Journal of the Russian Universities. Radioelectronics Ocean Science 19 6 1773 1789