CaCO3 dissolution experiments in Paleocene-Eocene agglutinated benthic foraminifera from Zumaya (Basque-Cantabric Basin, Spain)

The largest extinction of deep-sea benthic foraminifera in the Cenozoic occurred during the Paleocene-Eocene Thermal Maximum event (PETM, ~55.8 Ma). Much has been speculated about the causes of such extinction, and proposed mechanisms include changes in productivity and/or oxygenation of bottom wate...

Full description

Bibliographic Details
Published in:Estudios Geológicos
Main Authors: Arreguín-Rodríguez, G. J., Alegret, L.
Format: Article in Journal/Newspaper
Language:Spanish
Published: Consejo Superior de Investigaciones Científicas 2015
Subjects:
Online Access:http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/917
https://doi.org/10.3989/egeol.41758.330
id ftjegeologicos:oai:estudiosgeologicos.revistas.csic.es:article/917
record_format openpolar
institution Open Polar
collection Estudios Geológicos (E-Journal)
op_collection_id ftjegeologicos
language Spanish
topic benthic foraminiferal extinction
Paleocene-Eocene
warming
ocean acidification
extinción
foraminíferos bentónicos
Paleoceno-Eoceno
calentamiento
acidificación
spellingShingle benthic foraminiferal extinction
Paleocene-Eocene
warming
ocean acidification
extinción
foraminíferos bentónicos
Paleoceno-Eoceno
calentamiento
acidificación
Arreguín-Rodríguez, G. J.
Alegret, L.
CaCO3 dissolution experiments in Paleocene-Eocene agglutinated benthic foraminifera from Zumaya (Basque-Cantabric Basin, Spain)
topic_facet benthic foraminiferal extinction
Paleocene-Eocene
warming
ocean acidification
extinción
foraminíferos bentónicos
Paleoceno-Eoceno
calentamiento
acidificación
description The largest extinction of deep-sea benthic foraminifera in the Cenozoic occurred during the Paleocene-Eocene Thermal Maximum event (PETM, ~55.8 Ma). Much has been speculated about the causes of such extinction, and proposed mechanisms include changes in productivity and/or oxygenation of bottom waters, metabolic changes and in the composition of the food supply to the seafloor, or the ocean acidification related to the massive input of isotopically light carbon into the ocean-atmosphere system, among others. Here we analyse ocean acidification as a potential triggering mechanism of the extinctions. The early Eocene at the Zumaya section (Basque-Cantabrian Basin) is marked by a 4 m-thick interval with a very low CaCO3 content. In order to analyse whether CaCO3 dissolution had a direct effect on the extinctions across the PETM, we car-ried out dissolution experiments on various species of agglutinated benthic foraminifera from Zumaya. In general, agglutinated species that do not disappear in the interval of most intense dissolution at Zumaya were not -or only slightly- affected by our dissolution experiments, since they do not have calcareous particles or cement. However, some species that went extinct or locally disappeared during the early Eocene, such as Dorothia cylindracea, Spiroplectammina spectabilis and Haplophragmoides cf. walteri, are resistant to dissolution. These results sug-gest that, in addition to ocean acidification, other factors must have contributed to the destabilization of benthic foraminiferal assemblages. Durante el evento de calentamiento global conocido como Máximo Térmico del Paleoceno-Eoceno (PETM por sus siglas en inglés; hace ~55.8 Ma) tuvo lugar la mayor extinción de foraminíferos bentónicos de medios profundos de todo el Cenozoico. Mucho se ha especulado sobre las causas de dicha extinción, que incluyen cambios en la productividad y/o en la oxigenación de las aguas, cambios metabólicos y en la composición del aporte alimenticio al fondo marino, o la acidificación de los océanos relacionada con el aporte masivo de isótopos de carbono ligero al sistema océano-atmósfera, entre otros. En el presente estudio se analiza el potencial de la acidificación como agente desencadenante de las extinciones. En el corte de Zumaya (Cuenca Vasco-Cantábrica), el Eoceno inicial está marcado por un intervalo de 4 m con muy bajo contenido en CaCO3. Con el fin de analizar si la disolución del carbonato tuvo una incidencia directa sobre las extinciones del PETM, se han realizado experimentos de disolución en diversas especies de foraminíferos bentónicos aglutinados procedentes de Zumaya. En general, las especies aglutinadas que no desaparecen en el intervalo de máxima disolución en Zumaya son aquellas que fueron poco o nada afectadas por los experimentos de disolución, pues no presentan partículas y/o cemento calcáreo. No obstante, algunas especies que se extinguieron y/o desaparecieron localmente durante el Eoceno inicial, como Dorothia cylindracea, Spiroplectammina spectabilis y Haplophragmoides cf. walteri, resultaron ser resistentes a la disolución. Estos resultados sugieren que, además de la acidificación, debieron darse otros factores que contribuyeron a la desestabilización de las asociaciones de foraminíferos bentónicos.
format Article in Journal/Newspaper
author Arreguín-Rodríguez, G. J.
Alegret, L.
author_facet Arreguín-Rodríguez, G. J.
Alegret, L.
author_sort Arreguín-Rodríguez, G. J.
title CaCO3 dissolution experiments in Paleocene-Eocene agglutinated benthic foraminifera from Zumaya (Basque-Cantabric Basin, Spain)
title_short CaCO3 dissolution experiments in Paleocene-Eocene agglutinated benthic foraminifera from Zumaya (Basque-Cantabric Basin, Spain)
title_full CaCO3 dissolution experiments in Paleocene-Eocene agglutinated benthic foraminifera from Zumaya (Basque-Cantabric Basin, Spain)
title_fullStr CaCO3 dissolution experiments in Paleocene-Eocene agglutinated benthic foraminifera from Zumaya (Basque-Cantabric Basin, Spain)
title_full_unstemmed CaCO3 dissolution experiments in Paleocene-Eocene agglutinated benthic foraminifera from Zumaya (Basque-Cantabric Basin, Spain)
title_sort caco3 dissolution experiments in paleocene-eocene agglutinated benthic foraminifera from zumaya (basque-cantabric basin, spain)
publisher Consejo Superior de Investigaciones Científicas
publishDate 2015
url http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/917
https://doi.org/10.3989/egeol.41758.330
long_lat ENVELOPE(-59.650,-59.650,-62.417,-62.417)
ENVELOPE(13.782,13.782,67.054,67.054)
geographic Inglés
Tuvo
geographic_facet Inglés
Tuvo
genre Ocean acidification
genre_facet Ocean acidification
op_source Estudios Geológicos; Vol. 71 No. 1 (2015); e023
Estudios Geológicos; Vol. 71 Núm. 1 (2015); e023
1988-3250
0367-0449
10.3989/egeol.15711
op_relation http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/917/997
http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/917/998
http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/917/999
Agnini, C.; Fornaciari, E.; Rio, D.; Tateo, F.; Backman, J. & Giusberti, L. (2007). Responses of calcareous nannofossil assemblages, mineralogy and geochemistry to the environmental perturbations across the Paleocene/ Eocene boundary in the Venetian pre-Alps. Marine Micropaleontology, 63: 19–38. http://dx.doi.org/10.1016/j.marmicro.2006.10.002
Alegret, L.; Ortiz, S.; Orue-Etxebarria, X.; Bernaola, G.; Baceta, J.I.; Monechi, S.; Apellaniz, E. & Pujalte, V. (2009a). The Paleocene-Eocene Thermal Maximum: New data on microfossil turnover at Zumaia section, Spain. Palaios, 24: 318–328. http://dx.doi.org/10.2110/palo.2008.p08-057r
Alegret, L.; Ortiz, S. & Molina, E. (2009b). Extinction and recovery of benthic foraminifera across the Paleocene-Eocene Thermal Maximum at the Alamedilla section (Southern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 279: 186–200. http://dx.doi.org/10.1016/j.palaeo.2009.05.009
Alegret, L.; Ortiz, S.; Arenillas, I. & Molina, E. (2010). What happens when the ocean is overheated? The foraminiferal response across the Paleocene-Eocene Thermal Maximum at Alamedilla section (Spain). Geological Society of America Bulletin, 122: 1616–1624. http://dx.doi.org/10.1130/B30055.1
Boltovskoy, E. & Boltovskoy, D. (1989). Paleocene- Pleistocene benthic foraminiferal evidence of major paleoceanographic events in the eastern South Atlantic (DSDP Site 525, Walvis Ridge). Marine Micropaleontology, 14: 283–316. http://dx.doi.org/10.1016/0377-8398(89)90015-7
Bowen, G.J.; Bralower, T.J.; Delaney, M.L.; Dickens, G.R.; Kelly, D.C.; Koch, P.L.; Kump, L.R.; Meng, J.; Sloan, L.C.; Thomas, E.; Wing, S.L. & Zachos, J.C. (2006). The Paleocene-Eocene Thermal Maximum gives insight into greenhouse gas-induced environmental and biotic change. Eos, 87: 165–169. http://dx.doi.org/10.1029/2006EO170002
Bralower, T.J. (2002). Evidence of surface water oligotrophy during the Paleocene-Eocene thermal maximum: Nannofossil assemblage data from Ocean Drilling Program Site 690, Maud Rise, Weddell Sea. Paleoceanography, 17: X1-9. http://dx.doi.org/10.1029/2001pa000662
Charles, A.J.; Condon, D.J.; Harding, I.C.; Pälike, H.; Marshall, J.E.A.; Cui, Y.; Kump, L. & Croudace, I.W. (2011). Constraints on the numerical age of the Paleocene-Eocene boundary. Geochemistry, Geophysics, Geosystems, 12: Q0AA17.
Crouch, E.M.; Heilmann-Clausen, H.; Brinkhuis, H.E.G.; Morgans, K.M.; Rogers, H.; Egger, B. & Schmitz, B. (2001). Global dinoflagellate event associated with the Paleocene thermal maximum. Geology, 29: 315–318. 2.0.CO;2" target="_blank">http://dx.doi.org/10.1130/0091-7613(2001)029<0315:GDEAWT>2.0.CO;2
Ellis, B.F. & Messina, A.R. (2006). Catalogue of Foraminifera. Micropaleontology Press, New York. http://www.micropress.org/em/.
Fujita, K.; Hikami, M.; Suzuki, A.; Kuroyanagi, A.; Sakai, K.; Kawahata, H. & Nojiri, Y. (2011). Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers. Biogeosciences, 8: 2089–2098. http://dx.doi.org/10.5194/bg-8-2089-2011
Gibbs, S.J.; Bralower, T.J.; Bown, P.R.; Zachos, J.C. & Bybell, L.M. (2006). Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene thermal maximum: Implications for global productivity gradients. Geology, 34: 233–236. http://dx.doi.org/10.1130/G22381.1
Hart, M.; Pettit, L.; Wall-Palmer, D.; Smart, C.; Hall-Spencer, J.; Medina-Sanchez, A.; Prol Ledesma, R.M.; Rodolfo-Metalpa, R. & Collins, P. (2012). Investigation of the calcification response of foraminifera and pteropods to high CO2 environments in the Pleistocene, Paleogene and Cretaceous. Geophysical Research Abstracts, 14: EGU2012-9754.
Hintz, C.J.; Chandler, G.T.; Bernhard, J.M.; McCorkle, D.C.; Havach, S.M.; Blanks, J.K. & Shaw T.J. (2004). A physicochemically constrained seawater culturing system for production of benthic foraminifera. Limnology and Oceanography: Methods 2: 160–170. http://dx.doi.org/10.4319/lom.2004.2.160
Hönisch, B.; Ridgwell, A.; Schmidt, D.N.; Thomas, E.; Gibbs, S.J.; Sluijs, A.; Zeebe, R.; Kump, L.; Martindale, R.C.; Greene, S.E.; Kiessling, W.; Ries, J.; Zachos, J.C.; Royer, D.L.; Barker, S.; Marchitto, T.M. Jr.; Moyer, R.; Pelejero, C.; Ziveri, P.; Foster, G.L. & Williams, B. (2012). The geological record of ocean acidification. Science, 335: 1058–1063. http://dx.doi.org/10.1126/science.1208277 PMid:22383840
John, C.M.; Bohaty, S.M.; Zachos, J.C.; Sluijs, A.; Gibss, S.; Brinkhuis, H. & Bralower, T.J. (2008). North American continental margin records of the Paleocene- Eocene thermal maximum: Implications for global carbon and hydrological cycling. Paleoceanography, 23: PA2217. http://dx.doi.org/10.1029/2007PA001465
Kaiho, K.; Morgans, H.E.G. & Okada, H. (1993). Faunal turnover of intermediate-water benthic foraminifera during the Paleogene in New Zealand. Marine Micropaleontology, 23: 51–86. http://dx.doi.org/10.1016/0377-8398(93)90053-Z
Kaminski, M.A. & Gradstein, F.M. (2005). Atlas of Paleogene cosmopolitan deep-water agglutinated foraminifera. Grzybowski Foundation Special Publication 10, Cracovia, Polonia, 597 pp.
Kelly, D.C.; Bralower, T.J. & Zachos, J.C. (1998). Evolutionary consequences of the latest Paleocene thermal maximum for tropical planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 141: 139–161. http://dx.doi.org/10.1016/S0031-0182(98)00017-0
Kennett, J.P. & Stott, L.D. (1991). Abrupt deep-sea warming palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 353: 225–229. http://dx.doi.org/10.1038/353225a0
Koch, P.L.; Zachos, J.C. & Gingerich, P.D. (1992). Correlation between isotope records in marine and continental carbon reservoirs near the Paleocene/Eocene boundary. Nature, 358: 319–322. http://dx.doi.org/10.1038/358319a0
Loeblich, A.R. Jr. & Tappan, H. (1988). Foraminifera genera and their classification. Van Nostrand Reinhold Company Inc., New York, 970 pp. http://dx.doi.org/10.1007/978-1-4899-5760-3
McIntyre-Wressnig, A.; Bernhard, J.M.; McCorkle, D.C. & Hallock, P. (2013). Non-lethal effects of ocean acidification on the symbiont-bearing benthic foraminifer Amphistegina gibbosa. Marine Ecology Progress Series, 472: 45–60. http://dx.doi.org/10.3354/meps09918
Nguyen, T.M.P.; Petrizzo, M.R. & Speijer, R.P. (2009). Experimental dissolution of a fossil foraminiferal assemblage (Paleocene-Eocene Thermal Maximum, Dababiya, Egypt): Implications for paleoenvironmental reconstructions. Marine Micropaleontology, 73: 241–258. http://dx.doi.org/10.1016/j.marmicro.2009.10.005
Nguyen, T.M.P.; Petrizzo, M.R.; Stassen, P. & Speijer, R.P. (2011). Dissolution susceptibility of Paleocene-Eocene planktic foraminifera: Implications for palaeoceanographic reconstructions. Marine Micropaleontology, 81: 1–21. http://dx.doi.org/10.1016/j.marmicro.2011.07.001
Orue-Etxebarria, X.; Pujalte, V.; Bernaola, G.; Apellaniz, E.; Baceta, J.I.; Payros, A.; Nú-ez-Betelu, K.; Serra-Kiel, J. & Tosquella, J. (2001). Did the Late Paleocene Thermal Maximum affect the evolution of larger foraminifers?: Evidences from calcareous plankton of the Campo section (Pyrenees, Spain). Marine Micropaleontology, 41: 45–71. http://dx.doi.org/10.1016/S0377-8398(00)00052-9
Pujalte, V.; Orue-Etxebarria, X.; Schmitz, B.; Tosquella, J.; Baceta, J.I.; Payros, A.; Bernaola, G.; Caballero, F. & Apellaniz, E. (2003). Basal Ilerdian (earliest Eocene) turnover of larger foraminifera: age constraints based on calcareous plankton and δ13C isotopic profiles from new southern Pyrenean sections (Spain). En: Causes and consequences of Globally Warm Climates in the Early Paleogene (Wing, S.L.; Gingerich, P.D.; Schmitz, B. & Thomas, E., Eds.), Geological Society of America Special Paper, 369: 205–221.
Reymond, C.E.; Lloyd, A.; Kline, D.I.; Dove, S.G. & Pandolfi, J.M. (2013). Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Global Change Biology, 19: 291–302. http://dx.doi.org/10.1111/gcb.12035 PMid:23504740
Ries, J.B.; Cohen, A.L. & McCorkle, D.C. (2009). Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology, 37: 1131–1134. http://dx.doi.org/10.1130/G30210A.1
Röhl, U.; Bralower, T.J.; Norris, R.D. & Wefer, G. (2000). New chronology for the late Paleocene thermal maximum and its environmental implications. Geology, 28: 927–930. 2.0.CO;2" target="_blank">http://dx.doi.org/10.1130/0091-7613(2000)28<927:NCFTLP>2.0.CO;2
Setoyama, E.; Radmacher, W.; Kaminski, M.A. & Tyszka, J. (2013). Foraminiferal and palynological biostratigraphy and biofacies from a Santonian-Campanian submarine fan system in the Vøring Basin (offshore Norway). Marine and Petroleum Geology, 43: 396–408. http://dx.doi.org/10.1016/j.marpetgeo.2012.12.007
Steineck, P.L. & Thomas, E. (1986). The latest Paleocene crisis in the deep sea: Ostracode succesion at Maud Rise, Southern Ocean. Geology, 24: 583–586. 2.3.CO;2" target="_blank">http://dx.doi.org/10.1130/0091-7613(1996)024<0583:TLPCIT>2.3.CO;2
Stoll, H.M. (2005). Limited range of interspecific vital effects in coccolith stable isotopic records during the Paleocene-Eocene thermal maximum. Paleoceanography, 20: PA1007. http://dx.doi.org/10.1029/2004PA001046
Takeda, K. & Kaiho, K. (2007). Faunal turnovers in central Pacific benthic foraminifera during the Paleocene-Eocene thermal maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 251: 175–197. http://dx.doi.org/10.1016/j.palaeo.2007.02.026
Thomas, E. (1998). The biogeography of the late Paleocene benthic foraminiferal extinction. En: Late Paleocene-early Eocene biotic and climatic events in the marine and terrestrial records (Aubry, M.-P.; Lucas, S.G. & Berggren, W.A., Eds.), New York, Columbia University Press, 214–243.
Thomas, E. (2007). Cenozoic mass extinctions in the deep sea: what disturbs the largest habitat on Earth?. En: Large ecosystems perturbations: causes and consequences (Monechi, S.; Coccioni, R. & Rampino, M., Eds.), Geological Society of America Special Paper, 424: 1–24.
Thomas, E. (2012). Agglutinated benthic foraminifera during ocean acidification: what holds them together? En: Ninth International Workshop on Agglutinated Foraminifera (Alegret, L.; Ortiz, S. & Kaminski, M.A., Eds.), Abstract volume, 95–97.
Tjalsma, R.C. & Lohman, G.P. (1983). Paleocene-Eocene bathyal and abyssal benthic foraminifera from the Atlantic Ocean. Micropaleontology Special Publication 4, 89 pp.
Vincent, E.; Gibson, J.M. & Brun, L. (1974). Paleocene and Early Eocene microfacies, benthonic foraminifera, and paleobathymetry of Deep Sea Drilling Project Sites 236 and 237, western Indian ocean. En: Initial Reports of the Deep Sea Drilling Project (Fisher, R.L.; Bunce, E.T.; et al., Eds.), Washington (U. S. Government Printing Office), 24: 859–885.
Wing, S.L.; Harrington, G.J.; Smith, F.A.; Bloch, J.I.; Boyer, D.M. & Freeman, K.H., (2005). Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science, 310: 993–996. http://dx.doi.org/10.1126/science.1116913 PMid:16284173
Zachos, J.C.; Pagani, M.; Sloan, L.; Thomas, E. & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686–693. http://dx.doi.org/10.1126/science.1059412 PMid:11326091
Zachos, J.C.; Wara, M.W.; Bohaty, S.; Delaney, M.L.; Petrizzo, M.R.; Brill, A.; Bralower, T.J. & Premoli-Silva, I. (2003). A transient rise in tropical sea surface temperature during the Paleocene-Eocene Thermal Maximum. Science, 302: 1551–1554. http://dx.doi.org/10.1126/science.1090110 PMid:14576441
Zachos, J.C.; Röhl, U.; Schellenberg, S.A.; Sluijs, A.; Hodell, D.A.; Kelly, D.C.; Thomas, E.; Nicolo, M.; Raffi, I.; Lourens, L.J.; McCarren, H. & Kroon, D. (2005). Rapid Acidification of the Ocean During the Paleocene-Eocene Thermal Maximum. Science, 308: 1611–1615. http://dx.doi.org/10.1126/science.1109004 PMid:15947184
http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/917
doi:10.3989/egeol.41758.330
op_rights Derechos de autor 2015 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/egeol.41758.330
https://doi.org/10.3989/egeol.15711
https://doi.org/10.1029/2001pa000662
https://doi.org/10.1029/2004PA001046
container_title Estudios Geológicos
container_volume 71
container_issue 1
container_start_page e023
_version_ 1766157533406298112
spelling ftjegeologicos:oai:estudiosgeologicos.revistas.csic.es:article/917 2023-05-15T17:50:40+02:00 CaCO3 dissolution experiments in Paleocene-Eocene agglutinated benthic foraminifera from Zumaya (Basque-Cantabric Basin, Spain) Experimentos de disolución de CaCO3 en foraminíferos bentónicos aglutinados del Paleoceno-Eoceno en Zumaya (Cuenca Vasco-Cantábrica, España) Arreguín-Rodríguez, G. J. Alegret, L. 2015-06-30 text/html application/pdf text/xml http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/917 https://doi.org/10.3989/egeol.41758.330 spa spa Consejo Superior de Investigaciones Científicas http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/917/997 http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/917/998 http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/917/999 Agnini, C.; Fornaciari, E.; Rio, D.; Tateo, F.; Backman, J. & Giusberti, L. (2007). Responses of calcareous nannofossil assemblages, mineralogy and geochemistry to the environmental perturbations across the Paleocene/ Eocene boundary in the Venetian pre-Alps. Marine Micropaleontology, 63: 19–38. http://dx.doi.org/10.1016/j.marmicro.2006.10.002 Alegret, L.; Ortiz, S.; Orue-Etxebarria, X.; Bernaola, G.; Baceta, J.I.; Monechi, S.; Apellaniz, E. & Pujalte, V. (2009a). The Paleocene-Eocene Thermal Maximum: New data on microfossil turnover at Zumaia section, Spain. Palaios, 24: 318–328. http://dx.doi.org/10.2110/palo.2008.p08-057r Alegret, L.; Ortiz, S. & Molina, E. (2009b). Extinction and recovery of benthic foraminifera across the Paleocene-Eocene Thermal Maximum at the Alamedilla section (Southern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 279: 186–200. http://dx.doi.org/10.1016/j.palaeo.2009.05.009 Alegret, L.; Ortiz, S.; Arenillas, I. & Molina, E. (2010). What happens when the ocean is overheated? The foraminiferal response across the Paleocene-Eocene Thermal Maximum at Alamedilla section (Spain). Geological Society of America Bulletin, 122: 1616–1624. http://dx.doi.org/10.1130/B30055.1 Boltovskoy, E. & Boltovskoy, D. (1989). Paleocene- Pleistocene benthic foraminiferal evidence of major paleoceanographic events in the eastern South Atlantic (DSDP Site 525, Walvis Ridge). Marine Micropaleontology, 14: 283–316. http://dx.doi.org/10.1016/0377-8398(89)90015-7 Bowen, G.J.; Bralower, T.J.; Delaney, M.L.; Dickens, G.R.; Kelly, D.C.; Koch, P.L.; Kump, L.R.; Meng, J.; Sloan, L.C.; Thomas, E.; Wing, S.L. & Zachos, J.C. (2006). The Paleocene-Eocene Thermal Maximum gives insight into greenhouse gas-induced environmental and biotic change. Eos, 87: 165–169. http://dx.doi.org/10.1029/2006EO170002 Bralower, T.J. (2002). Evidence of surface water oligotrophy during the Paleocene-Eocene thermal maximum: Nannofossil assemblage data from Ocean Drilling Program Site 690, Maud Rise, Weddell Sea. Paleoceanography, 17: X1-9. http://dx.doi.org/10.1029/2001pa000662 Charles, A.J.; Condon, D.J.; Harding, I.C.; Pälike, H.; Marshall, J.E.A.; Cui, Y.; Kump, L. & Croudace, I.W. (2011). Constraints on the numerical age of the Paleocene-Eocene boundary. Geochemistry, Geophysics, Geosystems, 12: Q0AA17. Crouch, E.M.; Heilmann-Clausen, H.; Brinkhuis, H.E.G.; Morgans, K.M.; Rogers, H.; Egger, B. & Schmitz, B. (2001). Global dinoflagellate event associated with the Paleocene thermal maximum. Geology, 29: 315–318. 2.0.CO;2" target="_blank">http://dx.doi.org/10.1130/0091-7613(2001)029<0315:GDEAWT>2.0.CO;2 Ellis, B.F. & Messina, A.R. (2006). Catalogue of Foraminifera. Micropaleontology Press, New York. http://www.micropress.org/em/. Fujita, K.; Hikami, M.; Suzuki, A.; Kuroyanagi, A.; Sakai, K.; Kawahata, H. & Nojiri, Y. (2011). Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers. Biogeosciences, 8: 2089–2098. http://dx.doi.org/10.5194/bg-8-2089-2011 Gibbs, S.J.; Bralower, T.J.; Bown, P.R.; Zachos, J.C. & Bybell, L.M. (2006). Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene thermal maximum: Implications for global productivity gradients. Geology, 34: 233–236. http://dx.doi.org/10.1130/G22381.1 Hart, M.; Pettit, L.; Wall-Palmer, D.; Smart, C.; Hall-Spencer, J.; Medina-Sanchez, A.; Prol Ledesma, R.M.; Rodolfo-Metalpa, R. & Collins, P. (2012). Investigation of the calcification response of foraminifera and pteropods to high CO2 environments in the Pleistocene, Paleogene and Cretaceous. Geophysical Research Abstracts, 14: EGU2012-9754. Hintz, C.J.; Chandler, G.T.; Bernhard, J.M.; McCorkle, D.C.; Havach, S.M.; Blanks, J.K. & Shaw T.J. (2004). A physicochemically constrained seawater culturing system for production of benthic foraminifera. Limnology and Oceanography: Methods 2: 160–170. http://dx.doi.org/10.4319/lom.2004.2.160 Hönisch, B.; Ridgwell, A.; Schmidt, D.N.; Thomas, E.; Gibbs, S.J.; Sluijs, A.; Zeebe, R.; Kump, L.; Martindale, R.C.; Greene, S.E.; Kiessling, W.; Ries, J.; Zachos, J.C.; Royer, D.L.; Barker, S.; Marchitto, T.M. Jr.; Moyer, R.; Pelejero, C.; Ziveri, P.; Foster, G.L. & Williams, B. (2012). The geological record of ocean acidification. Science, 335: 1058–1063. http://dx.doi.org/10.1126/science.1208277 PMid:22383840 John, C.M.; Bohaty, S.M.; Zachos, J.C.; Sluijs, A.; Gibss, S.; Brinkhuis, H. & Bralower, T.J. (2008). North American continental margin records of the Paleocene- Eocene thermal maximum: Implications for global carbon and hydrological cycling. Paleoceanography, 23: PA2217. http://dx.doi.org/10.1029/2007PA001465 Kaiho, K.; Morgans, H.E.G. & Okada, H. (1993). Faunal turnover of intermediate-water benthic foraminifera during the Paleogene in New Zealand. Marine Micropaleontology, 23: 51–86. http://dx.doi.org/10.1016/0377-8398(93)90053-Z Kaminski, M.A. & Gradstein, F.M. (2005). Atlas of Paleogene cosmopolitan deep-water agglutinated foraminifera. Grzybowski Foundation Special Publication 10, Cracovia, Polonia, 597 pp. Kelly, D.C.; Bralower, T.J. & Zachos, J.C. (1998). Evolutionary consequences of the latest Paleocene thermal maximum for tropical planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 141: 139–161. http://dx.doi.org/10.1016/S0031-0182(98)00017-0 Kennett, J.P. & Stott, L.D. (1991). Abrupt deep-sea warming palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 353: 225–229. http://dx.doi.org/10.1038/353225a0 Koch, P.L.; Zachos, J.C. & Gingerich, P.D. (1992). Correlation between isotope records in marine and continental carbon reservoirs near the Paleocene/Eocene boundary. Nature, 358: 319–322. http://dx.doi.org/10.1038/358319a0 Loeblich, A.R. Jr. & Tappan, H. (1988). Foraminifera genera and their classification. Van Nostrand Reinhold Company Inc., New York, 970 pp. http://dx.doi.org/10.1007/978-1-4899-5760-3 McIntyre-Wressnig, A.; Bernhard, J.M.; McCorkle, D.C. & Hallock, P. (2013). Non-lethal effects of ocean acidification on the symbiont-bearing benthic foraminifer Amphistegina gibbosa. Marine Ecology Progress Series, 472: 45–60. http://dx.doi.org/10.3354/meps09918 Nguyen, T.M.P.; Petrizzo, M.R. & Speijer, R.P. (2009). Experimental dissolution of a fossil foraminiferal assemblage (Paleocene-Eocene Thermal Maximum, Dababiya, Egypt): Implications for paleoenvironmental reconstructions. Marine Micropaleontology, 73: 241–258. http://dx.doi.org/10.1016/j.marmicro.2009.10.005 Nguyen, T.M.P.; Petrizzo, M.R.; Stassen, P. & Speijer, R.P. (2011). Dissolution susceptibility of Paleocene-Eocene planktic foraminifera: Implications for palaeoceanographic reconstructions. Marine Micropaleontology, 81: 1–21. http://dx.doi.org/10.1016/j.marmicro.2011.07.001 Orue-Etxebarria, X.; Pujalte, V.; Bernaola, G.; Apellaniz, E.; Baceta, J.I.; Payros, A.; Nú-ez-Betelu, K.; Serra-Kiel, J. & Tosquella, J. (2001). Did the Late Paleocene Thermal Maximum affect the evolution of larger foraminifers?: Evidences from calcareous plankton of the Campo section (Pyrenees, Spain). Marine Micropaleontology, 41: 45–71. http://dx.doi.org/10.1016/S0377-8398(00)00052-9 Pujalte, V.; Orue-Etxebarria, X.; Schmitz, B.; Tosquella, J.; Baceta, J.I.; Payros, A.; Bernaola, G.; Caballero, F. & Apellaniz, E. (2003). Basal Ilerdian (earliest Eocene) turnover of larger foraminifera: age constraints based on calcareous plankton and δ13C isotopic profiles from new southern Pyrenean sections (Spain). En: Causes and consequences of Globally Warm Climates in the Early Paleogene (Wing, S.L.; Gingerich, P.D.; Schmitz, B. & Thomas, E., Eds.), Geological Society of America Special Paper, 369: 205–221. Reymond, C.E.; Lloyd, A.; Kline, D.I.; Dove, S.G. & Pandolfi, J.M. (2013). Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Global Change Biology, 19: 291–302. http://dx.doi.org/10.1111/gcb.12035 PMid:23504740 Ries, J.B.; Cohen, A.L. & McCorkle, D.C. (2009). Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology, 37: 1131–1134. http://dx.doi.org/10.1130/G30210A.1 Röhl, U.; Bralower, T.J.; Norris, R.D. & Wefer, G. (2000). New chronology for the late Paleocene thermal maximum and its environmental implications. Geology, 28: 927–930. 2.0.CO;2" target="_blank">http://dx.doi.org/10.1130/0091-7613(2000)28<927:NCFTLP>2.0.CO;2 Setoyama, E.; Radmacher, W.; Kaminski, M.A. & Tyszka, J. (2013). Foraminiferal and palynological biostratigraphy and biofacies from a Santonian-Campanian submarine fan system in the Vøring Basin (offshore Norway). Marine and Petroleum Geology, 43: 396–408. http://dx.doi.org/10.1016/j.marpetgeo.2012.12.007 Steineck, P.L. & Thomas, E. (1986). The latest Paleocene crisis in the deep sea: Ostracode succesion at Maud Rise, Southern Ocean. Geology, 24: 583–586. 2.3.CO;2" target="_blank">http://dx.doi.org/10.1130/0091-7613(1996)024<0583:TLPCIT>2.3.CO;2 Stoll, H.M. (2005). Limited range of interspecific vital effects in coccolith stable isotopic records during the Paleocene-Eocene thermal maximum. Paleoceanography, 20: PA1007. http://dx.doi.org/10.1029/2004PA001046 Takeda, K. & Kaiho, K. (2007). Faunal turnovers in central Pacific benthic foraminifera during the Paleocene-Eocene thermal maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 251: 175–197. http://dx.doi.org/10.1016/j.palaeo.2007.02.026 Thomas, E. (1998). The biogeography of the late Paleocene benthic foraminiferal extinction. En: Late Paleocene-early Eocene biotic and climatic events in the marine and terrestrial records (Aubry, M.-P.; Lucas, S.G. & Berggren, W.A., Eds.), New York, Columbia University Press, 214–243. Thomas, E. (2007). Cenozoic mass extinctions in the deep sea: what disturbs the largest habitat on Earth?. En: Large ecosystems perturbations: causes and consequences (Monechi, S.; Coccioni, R. & Rampino, M., Eds.), Geological Society of America Special Paper, 424: 1–24. Thomas, E. (2012). Agglutinated benthic foraminifera during ocean acidification: what holds them together? En: Ninth International Workshop on Agglutinated Foraminifera (Alegret, L.; Ortiz, S. & Kaminski, M.A., Eds.), Abstract volume, 95–97. Tjalsma, R.C. & Lohman, G.P. (1983). Paleocene-Eocene bathyal and abyssal benthic foraminifera from the Atlantic Ocean. Micropaleontology Special Publication 4, 89 pp. Vincent, E.; Gibson, J.M. & Brun, L. (1974). Paleocene and Early Eocene microfacies, benthonic foraminifera, and paleobathymetry of Deep Sea Drilling Project Sites 236 and 237, western Indian ocean. En: Initial Reports of the Deep Sea Drilling Project (Fisher, R.L.; Bunce, E.T.; et al., Eds.), Washington (U. S. Government Printing Office), 24: 859–885. Wing, S.L.; Harrington, G.J.; Smith, F.A.; Bloch, J.I.; Boyer, D.M. & Freeman, K.H., (2005). Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science, 310: 993–996. http://dx.doi.org/10.1126/science.1116913 PMid:16284173 Zachos, J.C.; Pagani, M.; Sloan, L.; Thomas, E. & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686–693. http://dx.doi.org/10.1126/science.1059412 PMid:11326091 Zachos, J.C.; Wara, M.W.; Bohaty, S.; Delaney, M.L.; Petrizzo, M.R.; Brill, A.; Bralower, T.J. & Premoli-Silva, I. (2003). A transient rise in tropical sea surface temperature during the Paleocene-Eocene Thermal Maximum. Science, 302: 1551–1554. http://dx.doi.org/10.1126/science.1090110 PMid:14576441 Zachos, J.C.; Röhl, U.; Schellenberg, S.A.; Sluijs, A.; Hodell, D.A.; Kelly, D.C.; Thomas, E.; Nicolo, M.; Raffi, I.; Lourens, L.J.; McCarren, H. & Kroon, D. (2005). Rapid Acidification of the Ocean During the Paleocene-Eocene Thermal Maximum. Science, 308: 1611–1615. http://dx.doi.org/10.1126/science.1109004 PMid:15947184 http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/917 doi:10.3989/egeol.41758.330 Derechos de autor 2015 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Estudios Geológicos; Vol. 71 No. 1 (2015); e023 Estudios Geológicos; Vol. 71 Núm. 1 (2015); e023 1988-3250 0367-0449 10.3989/egeol.15711 benthic foraminiferal extinction Paleocene-Eocene warming ocean acidification extinción foraminíferos bentónicos Paleoceno-Eoceno calentamiento acidificación info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed article Artículo revisado por pares 2015 ftjegeologicos https://doi.org/10.3989/egeol.41758.330 https://doi.org/10.3989/egeol.15711 https://doi.org/10.1029/2001pa000662 https://doi.org/10.1029/2004PA001046 2021-01-13T00:33:40Z The largest extinction of deep-sea benthic foraminifera in the Cenozoic occurred during the Paleocene-Eocene Thermal Maximum event (PETM, ~55.8 Ma). Much has been speculated about the causes of such extinction, and proposed mechanisms include changes in productivity and/or oxygenation of bottom waters, metabolic changes and in the composition of the food supply to the seafloor, or the ocean acidification related to the massive input of isotopically light carbon into the ocean-atmosphere system, among others. Here we analyse ocean acidification as a potential triggering mechanism of the extinctions. The early Eocene at the Zumaya section (Basque-Cantabrian Basin) is marked by a 4 m-thick interval with a very low CaCO3 content. In order to analyse whether CaCO3 dissolution had a direct effect on the extinctions across the PETM, we car-ried out dissolution experiments on various species of agglutinated benthic foraminifera from Zumaya. In general, agglutinated species that do not disappear in the interval of most intense dissolution at Zumaya were not -or only slightly- affected by our dissolution experiments, since they do not have calcareous particles or cement. However, some species that went extinct or locally disappeared during the early Eocene, such as Dorothia cylindracea, Spiroplectammina spectabilis and Haplophragmoides cf. walteri, are resistant to dissolution. These results sug-gest that, in addition to ocean acidification, other factors must have contributed to the destabilization of benthic foraminiferal assemblages. Durante el evento de calentamiento global conocido como Máximo Térmico del Paleoceno-Eoceno (PETM por sus siglas en inglés; hace ~55.8 Ma) tuvo lugar la mayor extinción de foraminíferos bentónicos de medios profundos de todo el Cenozoico. Mucho se ha especulado sobre las causas de dicha extinción, que incluyen cambios en la productividad y/o en la oxigenación de las aguas, cambios metabólicos y en la composición del aporte alimenticio al fondo marino, o la acidificación de los océanos relacionada con el aporte masivo de isótopos de carbono ligero al sistema océano-atmósfera, entre otros. En el presente estudio se analiza el potencial de la acidificación como agente desencadenante de las extinciones. En el corte de Zumaya (Cuenca Vasco-Cantábrica), el Eoceno inicial está marcado por un intervalo de 4 m con muy bajo contenido en CaCO3. Con el fin de analizar si la disolución del carbonato tuvo una incidencia directa sobre las extinciones del PETM, se han realizado experimentos de disolución en diversas especies de foraminíferos bentónicos aglutinados procedentes de Zumaya. En general, las especies aglutinadas que no desaparecen en el intervalo de máxima disolución en Zumaya son aquellas que fueron poco o nada afectadas por los experimentos de disolución, pues no presentan partículas y/o cemento calcáreo. No obstante, algunas especies que se extinguieron y/o desaparecieron localmente durante el Eoceno inicial, como Dorothia cylindracea, Spiroplectammina spectabilis y Haplophragmoides cf. walteri, resultaron ser resistentes a la disolución. Estos resultados sugieren que, además de la acidificación, debieron darse otros factores que contribuyeron a la desestabilización de las asociaciones de foraminíferos bentónicos. Article in Journal/Newspaper Ocean acidification Estudios Geológicos (E-Journal) Inglés ENVELOPE(-59.650,-59.650,-62.417,-62.417) Tuvo ENVELOPE(13.782,13.782,67.054,67.054) Estudios Geológicos 71 1 e023