Revealing the Organization of Complex Adaptive Systems through Multivariate Time Series Modeling

Revealing the adaptive responses of ecological, social, and economic systems to a transforming biosphere is crucial for understanding system resilience and preventing collapse. However, testing the theory that underpins complex adaptive system organization (e.g., panarchy theory) is challenging. We...

Full description

Bibliographic Details
Main Authors: Angeler, David G, Drakare, Stina, Johnson, Richard K
Format: Other/Unknown Material
Language:English
Published: Resilience Alliance 2011
Subjects:
Online Access:http://www.ecologyandsociety.org/vol16/iss3/art5/
id ftjecolog:oai:.www.ecologyandsociety.org:article/4175
record_format openpolar
spelling ftjecolog:oai:.www.ecologyandsociety.org:article/4175 2023-05-15T17:35:39+02:00 Revealing the Organization of Complex Adaptive Systems through Multivariate Time Series Modeling Angeler, David G Drakare, Stina Johnson, Richard K 2011-07-25 text/html application/pdf http://www.ecologyandsociety.org/vol16/iss3/art5/ en eng Resilience Alliance Ecology and Society; Vol. 16, No. 3 (2011) complex adaptive systems dynamics; complex adaptive systems organization; cross-scale structure; discontinuities; environmental variables; invertebrates; lakes; panarchy; phytoplankton; resilience; time series modeling Peer-Reviewed Reports 2011 ftjecolog 2019-04-09T11:22:47Z Revealing the adaptive responses of ecological, social, and economic systems to a transforming biosphere is crucial for understanding system resilience and preventing collapse. However, testing the theory that underpins complex adaptive system organization (e.g., panarchy theory) is challenging. We used multivariate time series modeling to identify scale-specific system organization and, by extension, apparent resilience mechanisms. We used a 20-year time series of invertebrates and phytoplankton from 26 Swedish lakes to test the proposition that a few key-structuring environmental variables at specific scales create discontinuities in community dynamics. Cross-scale structure was manifested in two independent species groups within both communities across lakes. The first species group showed patterns of directional temporal change, which was related to environmental variables that acted at broad spatiotemporal scales (reduced sulfate deposition, North Atlantic Oscillation). The second species group showed fluctuation patterns, which often could not be explained by environmental variables. However, when significant relationships were found, species–group trends were predicted by variables (total organic carbon, nutrients) that acted at narrower spatial scales (i.e., catchment and lake). Although the sets of environmental variables that predicted the species groups differed between phytoplankton and invertebrates, the scale-specific imprints of keystone environmental variables for creating cross-scale structure were clear for both communities. Temporal trends of functional groups did not track the observed structural changes, suggesting functional stability despite structural change. Our approach allows for identifying scale-specific patterns and processes, thus providing opportunities for better characterization of complex adaptive systems organization and dynamics. This, in turn, holds potential for more accurate evaluation of resilience in disparate system types (ecological, social, economic). Other/Unknown Material North Atlantic North Atlantic oscillation Unknown
institution Open Polar
collection Unknown
op_collection_id ftjecolog
language English
topic complex adaptive systems dynamics; complex adaptive systems organization; cross-scale structure; discontinuities; environmental variables; invertebrates; lakes; panarchy; phytoplankton; resilience; time series modeling
spellingShingle complex adaptive systems dynamics; complex adaptive systems organization; cross-scale structure; discontinuities; environmental variables; invertebrates; lakes; panarchy; phytoplankton; resilience; time series modeling
Angeler, David G
Drakare, Stina
Johnson, Richard K
Revealing the Organization of Complex Adaptive Systems through Multivariate Time Series Modeling
topic_facet complex adaptive systems dynamics; complex adaptive systems organization; cross-scale structure; discontinuities; environmental variables; invertebrates; lakes; panarchy; phytoplankton; resilience; time series modeling
description Revealing the adaptive responses of ecological, social, and economic systems to a transforming biosphere is crucial for understanding system resilience and preventing collapse. However, testing the theory that underpins complex adaptive system organization (e.g., panarchy theory) is challenging. We used multivariate time series modeling to identify scale-specific system organization and, by extension, apparent resilience mechanisms. We used a 20-year time series of invertebrates and phytoplankton from 26 Swedish lakes to test the proposition that a few key-structuring environmental variables at specific scales create discontinuities in community dynamics. Cross-scale structure was manifested in two independent species groups within both communities across lakes. The first species group showed patterns of directional temporal change, which was related to environmental variables that acted at broad spatiotemporal scales (reduced sulfate deposition, North Atlantic Oscillation). The second species group showed fluctuation patterns, which often could not be explained by environmental variables. However, when significant relationships were found, species–group trends were predicted by variables (total organic carbon, nutrients) that acted at narrower spatial scales (i.e., catchment and lake). Although the sets of environmental variables that predicted the species groups differed between phytoplankton and invertebrates, the scale-specific imprints of keystone environmental variables for creating cross-scale structure were clear for both communities. Temporal trends of functional groups did not track the observed structural changes, suggesting functional stability despite structural change. Our approach allows for identifying scale-specific patterns and processes, thus providing opportunities for better characterization of complex adaptive systems organization and dynamics. This, in turn, holds potential for more accurate evaluation of resilience in disparate system types (ecological, social, economic).
format Other/Unknown Material
author Angeler, David G
Drakare, Stina
Johnson, Richard K
author_facet Angeler, David G
Drakare, Stina
Johnson, Richard K
author_sort Angeler, David G
title Revealing the Organization of Complex Adaptive Systems through Multivariate Time Series Modeling
title_short Revealing the Organization of Complex Adaptive Systems through Multivariate Time Series Modeling
title_full Revealing the Organization of Complex Adaptive Systems through Multivariate Time Series Modeling
title_fullStr Revealing the Organization of Complex Adaptive Systems through Multivariate Time Series Modeling
title_full_unstemmed Revealing the Organization of Complex Adaptive Systems through Multivariate Time Series Modeling
title_sort revealing the organization of complex adaptive systems through multivariate time series modeling
publisher Resilience Alliance
publishDate 2011
url http://www.ecologyandsociety.org/vol16/iss3/art5/
genre North Atlantic
North Atlantic oscillation
genre_facet North Atlantic
North Atlantic oscillation
op_source Ecology and Society; Vol. 16, No. 3 (2011)
_version_ 1766134883384557568