Modeling Distribution and Abundance of Antarctic Baleen Whales Using Ships of Opportunity

Information on animal abundance and distribution is at the cornerstone of many wildlife and conservation strategies. However, these data can be difficult and costly to obtain for cetacean species. The expense of sufficient ship time to conduct design-unbiased line transect surveys may be simply out...

Full description

Bibliographic Details
Main Authors: Williams, Rob, Hedley, Sharon L., Hammond, Philip S.
Format: Other/Unknown Material
Language:English
Published: Resilience Alliance 2006
Subjects:
Online Access:http://www.ecologyandsociety.org/vol11/iss1/art1/
id ftjecolog:oai:.www.ecologyandsociety.org:article/1534
record_format openpolar
spelling ftjecolog:oai:.www.ecologyandsociety.org:article/1534 2023-05-15T14:02:56+02:00 Modeling Distribution and Abundance of Antarctic Baleen Whales Using Ships of Opportunity Williams, Rob Hedley, Sharon L. Hammond, Philip S. 2006-02-07 text/html application/pdf http://www.ecologyandsociety.org/vol11/iss1/art1/ en eng Resilience Alliance Ecology and Society; Vol. 11, No. 1 (2006) abundance; Antarctic; baleen whale; cetacean; distance sampling; distribution; line transect; platform of opportunity; spatial model Peer-Reviewed Reports 2006 ftjecolog 2019-04-09T11:22:27Z Information on animal abundance and distribution is at the cornerstone of many wildlife and conservation strategies. However, these data can be difficult and costly to obtain for cetacean species. The expense of sufficient ship time to conduct design-unbiased line transect surveys may be simply out of reach for researchers in many countries, which nonetheless grapple with problems of conservation of endangered species, by-catch of small cetaceans in commercial fisheries, and progression toward ecosystem-based fisheries management. Recently developed spatial modeling techniques show promise for estimating wildlife abundance using non-randomized surveys, but have yet to receive much field-testing in areas where designed surveys have also been conducted. Effort and sightings data were collected along 9650 km of transects aboard ships of opportunity in the Southern Ocean during the austral summers of 2000–2001 and 2001–2002. Generalized additive models with generalized cross-validation were used to express heterogeneity of cetacean sightings as functions of spatial covariates. Models were used to map predicted densities and to estimate abundance of humpback, minke, and fin whales in the Drake Passage and along the Antarctic Peninsula. All species’ distribution maps showed strong density gradients, which were robust to jackknife resampling when each of 14 trips was removed sequentially with replacement. Looped animations of model predictions of whale density illustrate uncertainty in distribution estimates in a way that is informative to non-scientists. The best abundance estimate for humpback whales was 1829 (95% CI: 978-3422). Abundance of fin whales was 4487 (95% CI: 1326–15179) and minke whales was 1,544 (95% CI: 1,221–1,953). These estimates agreed roughly with those reported from a designed survey conducted in the region during the previous austral summer. These estimates assumed that all animals on the trackline were detected, but preliminary results suggest that any negative bias due to violation of this assumption was likely small. Similarly, current methodological limitations prohibit inclusion of all known sources of uncertainty in the favored variance estimator. Meanwhile, our approach can be seen generally as an inexpensive pilot study to identify areas of predicted high density that could be targeted to: inform stratified designs for future line transect surveys, making them less expensive and more precise; increase efficiency of future photo-identification or biopsy studies; identify candidate time-area fisheries closures to minimize by-catch; or direct ecotourism activities. The techniques are likely to apply to areas where funding is limiting, where cetacean studies or wilderness-based tourism are just beginning, or in regions where even a very rough estimate of animal abundance is needed for conservation or management purposes. Other/Unknown Material Antarc* Antarctic Antarctic Peninsula baleen whale baleen whales Drake Passage Southern Ocean Unknown Antarctic Antarctic Peninsula Austral Drake Passage Southern Ocean The Antarctic
institution Open Polar
collection Unknown
op_collection_id ftjecolog
language English
topic abundance; Antarctic; baleen whale; cetacean; distance sampling; distribution; line transect; platform of opportunity; spatial model
spellingShingle abundance; Antarctic; baleen whale; cetacean; distance sampling; distribution; line transect; platform of opportunity; spatial model
Williams, Rob
Hedley, Sharon L.
Hammond, Philip S.
Modeling Distribution and Abundance of Antarctic Baleen Whales Using Ships of Opportunity
topic_facet abundance; Antarctic; baleen whale; cetacean; distance sampling; distribution; line transect; platform of opportunity; spatial model
description Information on animal abundance and distribution is at the cornerstone of many wildlife and conservation strategies. However, these data can be difficult and costly to obtain for cetacean species. The expense of sufficient ship time to conduct design-unbiased line transect surveys may be simply out of reach for researchers in many countries, which nonetheless grapple with problems of conservation of endangered species, by-catch of small cetaceans in commercial fisheries, and progression toward ecosystem-based fisheries management. Recently developed spatial modeling techniques show promise for estimating wildlife abundance using non-randomized surveys, but have yet to receive much field-testing in areas where designed surveys have also been conducted. Effort and sightings data were collected along 9650 km of transects aboard ships of opportunity in the Southern Ocean during the austral summers of 2000–2001 and 2001–2002. Generalized additive models with generalized cross-validation were used to express heterogeneity of cetacean sightings as functions of spatial covariates. Models were used to map predicted densities and to estimate abundance of humpback, minke, and fin whales in the Drake Passage and along the Antarctic Peninsula. All species’ distribution maps showed strong density gradients, which were robust to jackknife resampling when each of 14 trips was removed sequentially with replacement. Looped animations of model predictions of whale density illustrate uncertainty in distribution estimates in a way that is informative to non-scientists. The best abundance estimate for humpback whales was 1829 (95% CI: 978-3422). Abundance of fin whales was 4487 (95% CI: 1326–15179) and minke whales was 1,544 (95% CI: 1,221–1,953). These estimates agreed roughly with those reported from a designed survey conducted in the region during the previous austral summer. These estimates assumed that all animals on the trackline were detected, but preliminary results suggest that any negative bias due to violation of this assumption was likely small. Similarly, current methodological limitations prohibit inclusion of all known sources of uncertainty in the favored variance estimator. Meanwhile, our approach can be seen generally as an inexpensive pilot study to identify areas of predicted high density that could be targeted to: inform stratified designs for future line transect surveys, making them less expensive and more precise; increase efficiency of future photo-identification or biopsy studies; identify candidate time-area fisheries closures to minimize by-catch; or direct ecotourism activities. The techniques are likely to apply to areas where funding is limiting, where cetacean studies or wilderness-based tourism are just beginning, or in regions where even a very rough estimate of animal abundance is needed for conservation or management purposes.
format Other/Unknown Material
author Williams, Rob
Hedley, Sharon L.
Hammond, Philip S.
author_facet Williams, Rob
Hedley, Sharon L.
Hammond, Philip S.
author_sort Williams, Rob
title Modeling Distribution and Abundance of Antarctic Baleen Whales Using Ships of Opportunity
title_short Modeling Distribution and Abundance of Antarctic Baleen Whales Using Ships of Opportunity
title_full Modeling Distribution and Abundance of Antarctic Baleen Whales Using Ships of Opportunity
title_fullStr Modeling Distribution and Abundance of Antarctic Baleen Whales Using Ships of Opportunity
title_full_unstemmed Modeling Distribution and Abundance of Antarctic Baleen Whales Using Ships of Opportunity
title_sort modeling distribution and abundance of antarctic baleen whales using ships of opportunity
publisher Resilience Alliance
publishDate 2006
url http://www.ecologyandsociety.org/vol11/iss1/art1/
geographic Antarctic
Antarctic Peninsula
Austral
Drake Passage
Southern Ocean
The Antarctic
geographic_facet Antarctic
Antarctic Peninsula
Austral
Drake Passage
Southern Ocean
The Antarctic
genre Antarc*
Antarctic
Antarctic Peninsula
baleen whale
baleen whales
Drake Passage
Southern Ocean
genre_facet Antarc*
Antarctic
Antarctic Peninsula
baleen whale
baleen whales
Drake Passage
Southern Ocean
op_source Ecology and Society; Vol. 11, No. 1 (2006)
_version_ 1766273393938661376