Integrating Zero Carbon and High Performance Green Building in Resorts in Western Northern Coast, Marsa Matrouh, Egypt

The Tyndall Climate Centre in a call for papers for its December 2013 “Radical Emissions Reductions” Conference said, “Today, in 2013, we face an unavoidably radical future. Both the World Bank and International Energy Agency released reports in November 2012 and July 2013 respectively which evaluat...

Full description

Bibliographic Details
Main Authors: Georgy, Maria, F. Bakr, Ali
Format: Article in Journal/Newspaper
Language:English
Published: American Scientific Research Journal for Engineering, Technology, and Sciences 2016
Subjects:
Ice
Online Access:http://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/2147
Description
Summary:The Tyndall Climate Centre in a call for papers for its December 2013 “Radical Emissions Reductions” Conference said, “Today, in 2013, we face an unavoidably radical future. Both the World Bank and International Energy Agency released reports in November 2012 and July 2013 respectively which evaluated current climate change policies and targets and concluded that “business as usual” was likely to result in four degrees of warming. The 2013 atmospheric CO2 levels are at about 400ppm. It is generally accepted by climate scientists that the CO2 level was 280ppm during the Holocene Period - a ten thousand year era of stable climates, which supported the development of human civilization. Now there is already too much carbon in the atmosphere. The current level of emissions has led to a 0.8 degree temperature increase. Already the planet is experiencing the impact of high emissions and rising temperatures. The 2012 summer arctic sea ice levels had record minimum in area and volume. Some scientists have predicted the total loss of arctic sea ice with the next decade. Positive feedback mechanisms are being triggered as the reduction in Arctic ice reduces the reflectivity of the globe and the melting of permafrost leads to release of trapped methane. These feedback mechanisms could lead to a global temperature rise between 1.80C and 2.30C above pre-industrial levels regardless of any action that may be taken subsequently to reduce emissions. The current estimate for the melting of Greenland’s ice sheets is 1.60C above pre-industrial levels, well within the range of two degrees that is considered a safe guardrail. The melting of Greenland’s ice sheets would lead to an eventual sea level rise of seven meters.