Prospects for the use of various species and strains of symbiotic bacteria (Xenorhabdus sp.) in the biological protection of potatoes from diseases in the European North of Russia

Research on the development of environmentally friendly plant protection systems against fungal pathogens using symbiotic bacteria Xenorhabdus sp. – symbionts of entomopathogenic nematodes (EPN) has been a new direction in agricultural practice in recent years and undoubtedly represent relevance and...

Full description

Bibliographic Details
Main Authors: Z. P. Kotova, T. A. Danilova, L. G. Danilov, M. V. Arkhipov, З. П. Котова, Т. А. Данилова, Л. Г. Данилов, М. В. Архипов
Other Authors: the research was carried out under the financial support of the Russian Science Foundation (Grant No. 24-26-20029), https://grant.rscf.ru/site/user/bids?role=master, работа выполнена при финансовой поддержке Российского научного фонда (грант № 24-26-20029), https://grant.rscf.ru/site/user/bids?role=master
Format: Article in Journal/Newspaper
Language:Russian
Published: FARC North-East 2024
Subjects:
Online Access:https://www.agronauka-sv.ru/jour/article/view/1668
https://doi.org/10.30766/2072-9081.2024.25.3.395-406
id ftjasene:oai:oai.agronauka.elpub.ru:article/1668
record_format openpolar
institution Open Polar
collection Agricultural Science Euro-North-East
op_collection_id ftjasene
language Russian
topic Phoma exigua var.exigua
potato
Streptomyces scabies (Thaxter) Waksman & Henrici
Rhizoctonia solani J. G. Kuhn
Phytophtora infestans (Montagne) de Bary
Phoma exigua var. exigua
картофель
Streptomyces scabies (Thaxter) Waksman & Henrici)
spellingShingle Phoma exigua var.exigua
potato
Streptomyces scabies (Thaxter) Waksman & Henrici
Rhizoctonia solani J. G. Kuhn
Phytophtora infestans (Montagne) de Bary
Phoma exigua var. exigua
картофель
Streptomyces scabies (Thaxter) Waksman & Henrici)
Z. P. Kotova
T. A. Danilova
L. G. Danilov
M. V. Arkhipov
З. П. Котова
Т. А. Данилова
Л. Г. Данилов
М. В. Архипов
Prospects for the use of various species and strains of symbiotic bacteria (Xenorhabdus sp.) in the biological protection of potatoes from diseases in the European North of Russia
topic_facet Phoma exigua var.exigua
potato
Streptomyces scabies (Thaxter) Waksman & Henrici
Rhizoctonia solani J. G. Kuhn
Phytophtora infestans (Montagne) de Bary
Phoma exigua var. exigua
картофель
Streptomyces scabies (Thaxter) Waksman & Henrici)
description Research on the development of environmentally friendly plant protection systems against fungal pathogens using symbiotic bacteria Xenorhabdus sp. – symbionts of entomopathogenic nematodes (EPN) has been a new direction in agricultural practice in recent years and undoubtedly represent relevance and scientific significance. The studies used suspensions of live and autoclaved cultures of symbiotic bacteria of symbionts of various types of EPN (Steinernema carpocapsae, S. feltiae and S. feltiae protense) with a bacterial cell titer of 107 CFU/ml in comparison with the biological preparation Phytosporin-M (dough) and water as a control. In laboratory conditions at a temperature of 25 oC, there were established differences in the antibiotic activity of the primary forms of producers of Xenorhabdus sp., isolated from different types of EPN. The greatest inhibition of the fungal growth zone on the 4th day was observed for metabolites of the S. carpocapsae strain against Alternaria solani. Biological effectiveness in suppressing this pathogen was 51 %. Field research conducted in 2022-2023 in the conditions of the Republic of Karelia on the mid-early potato variety ʻRed Scarlettʼ, showed that under epiphytotic conditions (low air temperatures and excessive waterlogging) double spraying of vegetative plants with a suspension of live and autoclaved cultures of symbiotic bacteria (EPN-1-1, EPN-2 and EPN-2 -1) reduced the development of rhizoctoniosis compared to the control variant by 50, 64 and 60 %, respectively. It was found that double treatment with a live and autoclaved aqueous suspension of bacteria, symbionts of the subspecies S. feltiae was more effective and ensured a reduction in the degree of development of scab symptoms by 1.3–2.8 times and the spread of rhizoctonia by 1.5–2.0 times. It has been also established that 2-fold spraying of plants with a live and autoclaved suspension of symbiotic bacteria S. feltiae during the growing season significantly increases the yield of tubers by 35–22 %, respectively. ...
author2 the research was carried out under the financial support of the Russian Science Foundation (Grant No. 24-26-20029), https://grant.rscf.ru/site/user/bids?role=master
работа выполнена при финансовой поддержке Российского научного фонда (грант № 24-26-20029), https://grant.rscf.ru/site/user/bids?role=master
format Article in Journal/Newspaper
author Z. P. Kotova
T. A. Danilova
L. G. Danilov
M. V. Arkhipov
З. П. Котова
Т. А. Данилова
Л. Г. Данилов
М. В. Архипов
author_facet Z. P. Kotova
T. A. Danilova
L. G. Danilov
M. V. Arkhipov
З. П. Котова
Т. А. Данилова
Л. Г. Данилов
М. В. Архипов
author_sort Z. P. Kotova
title Prospects for the use of various species and strains of symbiotic bacteria (Xenorhabdus sp.) in the biological protection of potatoes from diseases in the European North of Russia
title_short Prospects for the use of various species and strains of symbiotic bacteria (Xenorhabdus sp.) in the biological protection of potatoes from diseases in the European North of Russia
title_full Prospects for the use of various species and strains of symbiotic bacteria (Xenorhabdus sp.) in the biological protection of potatoes from diseases in the European North of Russia
title_fullStr Prospects for the use of various species and strains of symbiotic bacteria (Xenorhabdus sp.) in the biological protection of potatoes from diseases in the European North of Russia
title_full_unstemmed Prospects for the use of various species and strains of symbiotic bacteria (Xenorhabdus sp.) in the biological protection of potatoes from diseases in the European North of Russia
title_sort prospects for the use of various species and strains of symbiotic bacteria (xenorhabdus sp.) in the biological protection of potatoes from diseases in the european north of russia
publisher FARC North-East
publishDate 2024
url https://www.agronauka-sv.ru/jour/article/view/1668
https://doi.org/10.30766/2072-9081.2024.25.3.395-406
genre karelia*
Republic of Karelia
genre_facet karelia*
Republic of Karelia
op_source Agricultural Science Euro-North-East; Том 25, № 3 (2024); 395-406
Аграрная наука Евро-Северо-Востока; Том 25, № 3 (2024); 395-406
2500-1396
2072-9081
op_relation https://www.agronauka-sv.ru/jour/article/view/1668/774
Shapiro-Ilan D., Hazir S., Glazer I. Advances in use of entomopathogenic nematodes in integrated pest management. In: Kogan M., Heinrichs E. A. (eds). Integrated management of insect pests: current and future developments. Burleigh Dodds Science Publication. UK, 2020. pp. 1–30. DOI: https://doi.org/10.19103/AS.2019.0047.19
Gawad M. A., Ruan W., Hammam M. M. A. Entomopathogenic Nematodes: Integrated Pest Management and New Vistas. Egyptian Journal of Agronematology. 2023;22(1):1–18. DOI: https://doi.org/10.21608/ejaj.2023.280551
Павлюшин В. А., Новикова И. И., Бойкова И. В. Микробиологическая защита растений в технологиях фитосанитарной оптимизации агроэкосистем: теория и практика (обзор). Сельскохозяйственная биология. 2020;55(3):421–438. DOI: https://doi.org/10.15389/agrobiology.2020.3.421rus EDN: FEAOFP
Wright P. J. Morphological characterisation of the entomogenous nematodes Steinernema spp. and Heterorhabditis spp. (Nematoda: Rhabditida). New Zealand Journal of Zoology. 1990;17(4):577–585. DOI: https://doi.org/10.1080/03014223.1990.10422955
Boemare N., Biology, Taxonomy and Systematics of Photorhabdus and Xenorhabdus. In: Gaugler R. (ed.). In book: Entomopathogenic nematology. CABI Publishing, CAB International, 2002. pp. 35–56. DOI: https://doi.org/10.1079/9780851995670.0035
Данилов Л. Г., Павлюшин В. А. Разработка и реализация инновационного проекта по созданию опытного производства биологических препаратов на основе энтомопатогенных нематод. Вестник защиты растений. 2019;(2(100)):52–55. Режим доступа: https://www.elibrary.ru/item.asp?id=39132362 EDN: ISYMPB
Brivio M. F., Mastore M. Nematobacterial Complexes and Insect Hosts: Different Weapons for the Same War. Insects. 2018;9(3):117. DOI: https://doi.org/10.3390/insects9030117
Bisch G., Ogier J. C., Médigue C., Rouy Z., Vincent S., Tailliez P., Givaudan A., Gaudriault S. Comparative genomics between two Xenorhabdus bovienii strains highlights differential evolutionary scenarios within an entomopathogenic bacterial species. Genome Biology and Evolution. 2016; 8(1):148–160. DOI: https://doi.org/10.1093/gbe/evv248
Murfin K. E., Whooley A. C., Klassen J. L., Blair H. G. Comparison of Xenorhabdus bovienii bacterial strain genomes reveals diversity in symbiotic functions. BMC Genomics. 2015;16:889. DOI: https://doi.org/10.1186/s12864-015-2000-8
Иванова Т. С., Ивахненко О. А., Данилов Л. Г. Новый подвид энтомопатогенных нематод семейств Steinernema feltiae protensesubsp. N. (Nematoda: Steinernematidae) из Якутии. Паразитология. 2001;35(4):333–337. Режим доступа: https://www.elibrary.ru/item.asp?id=26019417 EDN: VXJYQB
Boszormenyi E., Ersek T., Fodor A., Fodor A. M., Foldes L. S., Hevesi M., Hogan J. S., Katona Z., Klein M. G., Kormany A., Pekar S., Szentirmai A., Sztaricskai F., Taylor R. A. J. Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. Journal of Applied Microbiology. 2009;107(3):746–759. DOI: https://doi.org/10.1111/j.1365-2672.2009.04249.x
Akhurst R. J. Morphological and Functional Dimorphism in Xenorhabdus spp., Bacteria Symbiotically Associated with the Insect Pathogenic Nematodes Neoaplectana and Heterorhabditis Free. Journal of General Microbiology. 1980;121(2):303–309. DOI: https://doi.org/10.1099/00221287-121-2-303
Данилов Л. Г., Зорина Е. А., Нащекина Т. Ю. Антибиотическая активность Xenorabdus sp. (Enterobagteriaceae) симбионтов энтомопатогенных нематод (Rhabditida: Steinernematidae). Вестник защиты растений. 2017;3(93):33–38. Режим доступа: https://www.elibrary.ru/item.asp?id=30079319 EDN: ZIFWIV
Агансонова Н. Е. Эффективность продуктов метаболизма симбиотических бактерий р. Xenorhabdus против парши обыкновенной. Защита и карантин растений. 2016;(10):25–27. Режим доступа: https://www.elibrary.ru/item.asp?id=26738475 EDN: WNDBOV
Benitez T., Rincon A. M., Limon M. C., Codon A. C. Biocontrol mechanisms of Trichoderma strains. International Microbiology. 2005;7(4):249–260. URL: https://www.researchgate.net/publication/8065870_Biocontrol_mechanism_of_Trichoderma_strains
Fang X. L., Li Z. Z., Wang Y. H., Zhang X. In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea. Journal of Applied Microbiology. 2011;111(1):145–154. DOI: https://doi.org/10.1111/j.1365-2672.2011.05033.x
https://www.agronauka-sv.ru/jour/article/view/1668
doi:10.30766/2072-9081.2024.25.3.395-406
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_doi https://doi.org/10.30766/2072-9081.2024.25.3.395-40610.19103/AS.2019.0047.1910.21608/ejaj.2023.28055110.15389/agrobiology.2020.3.421rus10.1080/03014223.1990.1042295510.1079/9780851995670.003510.3390/insects903011710.1093/gbe/evv24810.1186/s12864-015-2000-
_version_ 1810454335869419520
spelling ftjasene:oai:oai.agronauka.elpub.ru:article/1668 2024-09-15T18:16:20+00:00 Prospects for the use of various species and strains of symbiotic bacteria (Xenorhabdus sp.) in the biological protection of potatoes from diseases in the European North of Russia Перспективы применения различных видов и штаммов симбиотических бактерий (Xenorhabdus sp.) в биологической защите картофеля от болезней в условиях Европейского Севера России Z. P. Kotova T. A. Danilova L. G. Danilov M. V. Arkhipov З. П. Котова Т. А. Данилова Л. Г. Данилов М. В. Архипов the research was carried out under the financial support of the Russian Science Foundation (Grant No. 24-26-20029), https://grant.rscf.ru/site/user/bids?role=master работа выполнена при финансовой поддержке Российского научного фонда (грант № 24-26-20029), https://grant.rscf.ru/site/user/bids?role=master 2024-06-26 application/pdf https://www.agronauka-sv.ru/jour/article/view/1668 https://doi.org/10.30766/2072-9081.2024.25.3.395-406 rus rus FARC North-East https://www.agronauka-sv.ru/jour/article/view/1668/774 Shapiro-Ilan D., Hazir S., Glazer I. Advances in use of entomopathogenic nematodes in integrated pest management. In: Kogan M., Heinrichs E. A. (eds). Integrated management of insect pests: current and future developments. Burleigh Dodds Science Publication. UK, 2020. pp. 1–30. DOI: https://doi.org/10.19103/AS.2019.0047.19 Gawad M. A., Ruan W., Hammam M. M. A. Entomopathogenic Nematodes: Integrated Pest Management and New Vistas. Egyptian Journal of Agronematology. 2023;22(1):1–18. DOI: https://doi.org/10.21608/ejaj.2023.280551 Павлюшин В. А., Новикова И. И., Бойкова И. В. Микробиологическая защита растений в технологиях фитосанитарной оптимизации агроэкосистем: теория и практика (обзор). Сельскохозяйственная биология. 2020;55(3):421–438. DOI: https://doi.org/10.15389/agrobiology.2020.3.421rus EDN: FEAOFP Wright P. J. Morphological characterisation of the entomogenous nematodes Steinernema spp. and Heterorhabditis spp. (Nematoda: Rhabditida). New Zealand Journal of Zoology. 1990;17(4):577–585. DOI: https://doi.org/10.1080/03014223.1990.10422955 Boemare N., Biology, Taxonomy and Systematics of Photorhabdus and Xenorhabdus. In: Gaugler R. (ed.). In book: Entomopathogenic nematology. CABI Publishing, CAB International, 2002. pp. 35–56. DOI: https://doi.org/10.1079/9780851995670.0035 Данилов Л. Г., Павлюшин В. А. Разработка и реализация инновационного проекта по созданию опытного производства биологических препаратов на основе энтомопатогенных нематод. Вестник защиты растений. 2019;(2(100)):52–55. Режим доступа: https://www.elibrary.ru/item.asp?id=39132362 EDN: ISYMPB Brivio M. F., Mastore M. Nematobacterial Complexes and Insect Hosts: Different Weapons for the Same War. Insects. 2018;9(3):117. DOI: https://doi.org/10.3390/insects9030117 Bisch G., Ogier J. C., Médigue C., Rouy Z., Vincent S., Tailliez P., Givaudan A., Gaudriault S. Comparative genomics between two Xenorhabdus bovienii strains highlights differential evolutionary scenarios within an entomopathogenic bacterial species. Genome Biology and Evolution. 2016; 8(1):148–160. DOI: https://doi.org/10.1093/gbe/evv248 Murfin K. E., Whooley A. C., Klassen J. L., Blair H. G. Comparison of Xenorhabdus bovienii bacterial strain genomes reveals diversity in symbiotic functions. BMC Genomics. 2015;16:889. DOI: https://doi.org/10.1186/s12864-015-2000-8 Иванова Т. С., Ивахненко О. А., Данилов Л. Г. Новый подвид энтомопатогенных нематод семейств Steinernema feltiae protensesubsp. N. (Nematoda: Steinernematidae) из Якутии. Паразитология. 2001;35(4):333–337. Режим доступа: https://www.elibrary.ru/item.asp?id=26019417 EDN: VXJYQB Boszormenyi E., Ersek T., Fodor A., Fodor A. M., Foldes L. S., Hevesi M., Hogan J. S., Katona Z., Klein M. G., Kormany A., Pekar S., Szentirmai A., Sztaricskai F., Taylor R. A. J. Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. Journal of Applied Microbiology. 2009;107(3):746–759. DOI: https://doi.org/10.1111/j.1365-2672.2009.04249.x Akhurst R. J. Morphological and Functional Dimorphism in Xenorhabdus spp., Bacteria Symbiotically Associated with the Insect Pathogenic Nematodes Neoaplectana and Heterorhabditis Free. Journal of General Microbiology. 1980;121(2):303–309. DOI: https://doi.org/10.1099/00221287-121-2-303 Данилов Л. Г., Зорина Е. А., Нащекина Т. Ю. Антибиотическая активность Xenorabdus sp. (Enterobagteriaceae) симбионтов энтомопатогенных нематод (Rhabditida: Steinernematidae). Вестник защиты растений. 2017;3(93):33–38. Режим доступа: https://www.elibrary.ru/item.asp?id=30079319 EDN: ZIFWIV Агансонова Н. Е. Эффективность продуктов метаболизма симбиотических бактерий р. Xenorhabdus против парши обыкновенной. Защита и карантин растений. 2016;(10):25–27. Режим доступа: https://www.elibrary.ru/item.asp?id=26738475 EDN: WNDBOV Benitez T., Rincon A. M., Limon M. C., Codon A. C. Biocontrol mechanisms of Trichoderma strains. International Microbiology. 2005;7(4):249–260. URL: https://www.researchgate.net/publication/8065870_Biocontrol_mechanism_of_Trichoderma_strains Fang X. L., Li Z. Z., Wang Y. H., Zhang X. In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea. Journal of Applied Microbiology. 2011;111(1):145–154. DOI: https://doi.org/10.1111/j.1365-2672.2011.05033.x https://www.agronauka-sv.ru/jour/article/view/1668 doi:10.30766/2072-9081.2024.25.3.395-406 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Agricultural Science Euro-North-East; Том 25, № 3 (2024); 395-406 Аграрная наука Евро-Северо-Востока; Том 25, № 3 (2024); 395-406 2500-1396 2072-9081 Phoma exigua var.exigua potato Streptomyces scabies (Thaxter) Waksman & Henrici Rhizoctonia solani J. G. Kuhn Phytophtora infestans (Montagne) de Bary Phoma exigua var. exigua картофель Streptomyces scabies (Thaxter) Waksman & Henrici) info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2024 ftjasene https://doi.org/10.30766/2072-9081.2024.25.3.395-40610.19103/AS.2019.0047.1910.21608/ejaj.2023.28055110.15389/agrobiology.2020.3.421rus10.1080/03014223.1990.1042295510.1079/9780851995670.003510.3390/insects903011710.1093/gbe/evv24810.1186/s12864-015-2000- 2024-07-01T14:02:32Z Research on the development of environmentally friendly plant protection systems against fungal pathogens using symbiotic bacteria Xenorhabdus sp. – symbionts of entomopathogenic nematodes (EPN) has been a new direction in agricultural practice in recent years and undoubtedly represent relevance and scientific significance. The studies used suspensions of live and autoclaved cultures of symbiotic bacteria of symbionts of various types of EPN (Steinernema carpocapsae, S. feltiae and S. feltiae protense) with a bacterial cell titer of 107 CFU/ml in comparison with the biological preparation Phytosporin-M (dough) and water as a control. In laboratory conditions at a temperature of 25 oC, there were established differences in the antibiotic activity of the primary forms of producers of Xenorhabdus sp., isolated from different types of EPN. The greatest inhibition of the fungal growth zone on the 4th day was observed for metabolites of the S. carpocapsae strain against Alternaria solani. Biological effectiveness in suppressing this pathogen was 51 %. Field research conducted in 2022-2023 in the conditions of the Republic of Karelia on the mid-early potato variety ʻRed Scarlettʼ, showed that under epiphytotic conditions (low air temperatures and excessive waterlogging) double spraying of vegetative plants with a suspension of live and autoclaved cultures of symbiotic bacteria (EPN-1-1, EPN-2 and EPN-2 -1) reduced the development of rhizoctoniosis compared to the control variant by 50, 64 and 60 %, respectively. It was found that double treatment with a live and autoclaved aqueous suspension of bacteria, symbionts of the subspecies S. feltiae was more effective and ensured a reduction in the degree of development of scab symptoms by 1.3–2.8 times and the spread of rhizoctonia by 1.5–2.0 times. It has been also established that 2-fold spraying of plants with a live and autoclaved suspension of symbiotic bacteria S. feltiae during the growing season significantly increases the yield of tubers by 35–22 %, respectively. ... Article in Journal/Newspaper karelia* Republic of Karelia Agricultural Science Euro-North-East