Long-term and seasonal changes in the life-history biology of the abyssal holothurian Pseudostichopus aemulatus from the Porcupine Abyssal Plain (North-East Atlantic)

Long-term interannual variations in the benthic community structure are well-known from abyssal plains in the North Atlantic and North Pacific, where rapid responses to changes in the environment by first-order opportunists modify overall species composition. To increase our knowledge of the long-te...

Full description

Bibliographic Details
Published in:Deep Sea Research Part I: Oceanographic Research Papers
Main Authors: Campanyà-Llovet, Neus, Le Guitton, Marie, Watson, Sue-Ann
Format: Article in Journal/Newspaper
Language:unknown
Published: Elsevier 2021
Subjects:
Online Access:https://researchonline.jcu.edu.au/69730/1/Campanya-Llovet%20et%20al%202021%20DSR.pdf
id ftjamescook:oai:researchonline.jcu.edu.au:69730
record_format openpolar
spelling ftjamescook:oai:researchonline.jcu.edu.au:69730 2024-02-11T10:06:42+01:00 Long-term and seasonal changes in the life-history biology of the abyssal holothurian Pseudostichopus aemulatus from the Porcupine Abyssal Plain (North-East Atlantic) Campanyà-Llovet, Neus Le Guitton, Marie Watson, Sue-Ann 2021 application/pdf https://researchonline.jcu.edu.au/69730/1/Campanya-Llovet%20et%20al%202021%20DSR.pdf unknown Elsevier https://doi.org/10.1016/j.dsr.2021.103537 https://researchonline.jcu.edu.au/69730/ https://researchonline.jcu.edu.au/69730/1/Campanya-Llovet%20et%20al%202021%20DSR.pdf Campanyà-Llovet, Neus, Le Guitton, Marie, and Watson, Sue-Ann (2021) Long-term and seasonal changes in the life-history biology of the abyssal holothurian Pseudostichopus aemulatus from the Porcupine Abyssal Plain (North-East Atlantic). Deep-sea Research Part I: Oceanographic Research Papers, 174. 103537. restricted Article PeerReviewed 2021 ftjamescook https://doi.org/10.1016/j.dsr.2021.103537 2024-01-22T23:48:49Z Long-term interannual variations in the benthic community structure are well-known from abyssal plains in the North Atlantic and North Pacific, where rapid responses to changes in the environment by first-order opportunists modify overall species composition. To increase our knowledge of the long-term variations of deep-sea benthic communities in the North-East Atlantic, we studied the response of a second-order opportunist echinoderm, the holothurian Pseudostichopus aemulatus, before, during and after the “Amperima Event” – a four-year episode (1996–1999) where the first-order opportunistic holothurian, Amperima rosea, increased dramatically in density. We used a collection of 14 sampling times of deep-sea community assemblage over a sixteen-year period to understand the temporal variation (i.e., interannual and seasonal) in population structure (i.e., density and individual sizes) and reproduction (i.e., mean oocyte sizes, sex ratios, gonadal indices, and fecundity) in P. aemulatus. Samples were collected from the Porcupine Abyssal Plain (PAP) in the NE Atlantic Ocean at a depth of ca. 4850 m between 1989 and 2005 with a semi-balloon otter trawl (OTSB14) and an epibenthic sledge (BN1.5/C) at varying seasons. We measured individual body size, dissected organisms to prepare histological slides of their gonads, and measured the Feret oocyte diameter in females. We found changes in the life-history biology of P. aemulatus during the “Amperima Event”. Population density increased gradually from September 1997 until April 1999, when P. aemulatus reached a peak in density coinciding with the smallest mean body size observed (1998 and 1999) suggesting recruitment of juveniles. In 1997, before these changes in population structure, mean oocyte sizes were at their largest, suggesting a strong reproductive effort with individuals either preparing to spawn or spawning. This reproductive effort was minimal in the years after 1999, when we found the largest proportions of previtellogenic oocytes in individuals that were ... Article in Journal/Newspaper North Atlantic North East Atlantic James Cook University, Australia: ResearchOnline@JCU Pacific Deep Sea Research Part I: Oceanographic Research Papers 174 103537
institution Open Polar
collection James Cook University, Australia: ResearchOnline@JCU
op_collection_id ftjamescook
language unknown
description Long-term interannual variations in the benthic community structure are well-known from abyssal plains in the North Atlantic and North Pacific, where rapid responses to changes in the environment by first-order opportunists modify overall species composition. To increase our knowledge of the long-term variations of deep-sea benthic communities in the North-East Atlantic, we studied the response of a second-order opportunist echinoderm, the holothurian Pseudostichopus aemulatus, before, during and after the “Amperima Event” – a four-year episode (1996–1999) where the first-order opportunistic holothurian, Amperima rosea, increased dramatically in density. We used a collection of 14 sampling times of deep-sea community assemblage over a sixteen-year period to understand the temporal variation (i.e., interannual and seasonal) in population structure (i.e., density and individual sizes) and reproduction (i.e., mean oocyte sizes, sex ratios, gonadal indices, and fecundity) in P. aemulatus. Samples were collected from the Porcupine Abyssal Plain (PAP) in the NE Atlantic Ocean at a depth of ca. 4850 m between 1989 and 2005 with a semi-balloon otter trawl (OTSB14) and an epibenthic sledge (BN1.5/C) at varying seasons. We measured individual body size, dissected organisms to prepare histological slides of their gonads, and measured the Feret oocyte diameter in females. We found changes in the life-history biology of P. aemulatus during the “Amperima Event”. Population density increased gradually from September 1997 until April 1999, when P. aemulatus reached a peak in density coinciding with the smallest mean body size observed (1998 and 1999) suggesting recruitment of juveniles. In 1997, before these changes in population structure, mean oocyte sizes were at their largest, suggesting a strong reproductive effort with individuals either preparing to spawn or spawning. This reproductive effort was minimal in the years after 1999, when we found the largest proportions of previtellogenic oocytes in individuals that were ...
format Article in Journal/Newspaper
author Campanyà-Llovet, Neus
Le Guitton, Marie
Watson, Sue-Ann
spellingShingle Campanyà-Llovet, Neus
Le Guitton, Marie
Watson, Sue-Ann
Long-term and seasonal changes in the life-history biology of the abyssal holothurian Pseudostichopus aemulatus from the Porcupine Abyssal Plain (North-East Atlantic)
author_facet Campanyà-Llovet, Neus
Le Guitton, Marie
Watson, Sue-Ann
author_sort Campanyà-Llovet, Neus
title Long-term and seasonal changes in the life-history biology of the abyssal holothurian Pseudostichopus aemulatus from the Porcupine Abyssal Plain (North-East Atlantic)
title_short Long-term and seasonal changes in the life-history biology of the abyssal holothurian Pseudostichopus aemulatus from the Porcupine Abyssal Plain (North-East Atlantic)
title_full Long-term and seasonal changes in the life-history biology of the abyssal holothurian Pseudostichopus aemulatus from the Porcupine Abyssal Plain (North-East Atlantic)
title_fullStr Long-term and seasonal changes in the life-history biology of the abyssal holothurian Pseudostichopus aemulatus from the Porcupine Abyssal Plain (North-East Atlantic)
title_full_unstemmed Long-term and seasonal changes in the life-history biology of the abyssal holothurian Pseudostichopus aemulatus from the Porcupine Abyssal Plain (North-East Atlantic)
title_sort long-term and seasonal changes in the life-history biology of the abyssal holothurian pseudostichopus aemulatus from the porcupine abyssal plain (north-east atlantic)
publisher Elsevier
publishDate 2021
url https://researchonline.jcu.edu.au/69730/1/Campanya-Llovet%20et%20al%202021%20DSR.pdf
geographic Pacific
geographic_facet Pacific
genre North Atlantic
North East Atlantic
genre_facet North Atlantic
North East Atlantic
op_relation https://doi.org/10.1016/j.dsr.2021.103537
https://researchonline.jcu.edu.au/69730/
https://researchonline.jcu.edu.au/69730/1/Campanya-Llovet%20et%20al%202021%20DSR.pdf
Campanyà-Llovet, Neus, Le Guitton, Marie, and Watson, Sue-Ann (2021) Long-term and seasonal changes in the life-history biology of the abyssal holothurian Pseudostichopus aemulatus from the Porcupine Abyssal Plain (North-East Atlantic). Deep-sea Research Part I: Oceanographic Research Papers, 174. 103537.
op_rights restricted
op_doi https://doi.org/10.1016/j.dsr.2021.103537
container_title Deep Sea Research Part I: Oceanographic Research Papers
container_volume 174
container_start_page 103537
_version_ 1790604603649163264