Rapid sea level and climate change at the close of the Last Interglaciation (MIS 5e): evidence from the Bahama Islands

The geology of the Last Interglaciation (sensu stricto, marine isotope substage (MIS) 5e) in the Bahamas records the nature of sea level and climate change. After a period of quasi-stability for most of the interglaciation, during which reefs grew to +2.5 m, sea level rose rapidly at the end of the...

Full description

Bibliographic Details
Published in:Quaternary Science Reviews
Main Authors: Hearty, Paul J., Neumann, A. Conrad
Format: Article in Journal/Newspaper
Language:unknown
Published: Elsevier 2001
Subjects:
Online Access:https://researchonline.jcu.edu.au/13400/1/13400_Hearty_%26_Neumann_2001.pdf
Description
Summary:The geology of the Last Interglaciation (sensu stricto, marine isotope substage (MIS) 5e) in the Bahamas records the nature of sea level and climate change. After a period of quasi-stability for most of the interglaciation, during which reefs grew to +2.5 m, sea level rose rapidly at the end of the period, incising notches in older limestone. After brief stillstands at +6 and perhaps +8.5 m, sea level fell with apparent speed to the MIS 5d lowstand and much cooler climatic conditions. It was during this regression from the MIS 5e highstand that the North Atlantic suffered an oceanographic “reorganization” about 118±3 ka ago. During this same interval, massive dune-building greatly enlarged the Bahama Islands. Giant waves reshaped exposed lowlands into chevron-shaped beach ridges, ran up on older coastal ridges, and also broke off and threw megaboulders onto and over 20 m-high cliffs. The oolitic rocks recording these features yield concordant whole-rock amino acid ratios across the archipelago. Whether or not the Last Interglaciation serves as an appropriate analog for our “greenhouse” world, it nonetheless reveals the intricate details of climatic transitions between warm interglaciations and near glacial conditions.