Relative contribution of the ocean-air heat exchange and advective heat transport to the increase of the Barents Sea water temperature in the early 21st century
The annual water temperature in the major water masses of the Barents Sea (BS) has significantly increased since the early 2000s. Advective heat transport from the neighboring water areas and heat exchange through the sea surface are the major factors, which shape the hydrological conditions in the...
Main Authors: | , , , , , , , |
---|---|
Other Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | Russian |
Published: |
Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт
2024
|
Subjects: | |
Online Access: | https://www.aaresearch.science/jour/article/view/637 https://doi.org/10.30758/0555-2648-2024-70-3-310-322 |
_version_ | 1828683038791303168 |
---|---|
author | A. A. Sumkina A. V. Smirnov K. K. Kivva V. V. Ivanov А. А. Сумкина А. В. Смирнов К. К. Кивва В. В. Иванов |
author2 | The study was supported by the Russian Science Foundation grant 24-17-00041 Исследование выполнено при поддержке гранта РНФ 24-17-00041 |
author_facet | A. A. Sumkina A. V. Smirnov K. K. Kivva V. V. Ivanov А. А. Сумкина А. В. Смирнов К. К. Кивва В. В. Иванов |
author_sort | A. A. Sumkina |
collection | Arctic and Antarctic Research |
description | The annual water temperature in the major water masses of the Barents Sea (BS) has significantly increased since the early 2000s. Advective heat transport from the neighboring water areas and heat exchange through the sea surface are the major factors, which shape the hydrological conditions in the BS. The paper estimates the contributions of heat exchange at the sea-atmosphere boundary and advective heat transport to changes in the average water temperature of the BS for the entire sea area. The average annual heat balance of the BS is calculated using atmospheric and oceanic reanalysis data. The change in the average temperature of the BS water is estimated taking into account the heat consumption for ice melting. The average surface heat balance from 1993 to 2018 was negative throughout the entire sea area: –70…–100 W/m2 in the south and –10…–20 W/m2 in the north. The advective heat supply was calculated for 9 straits with neighboring water areas. The determining source of advective heat is the influx of Atlantic waters from the Norwegian Sea between Cape Nordkapp and Bear Island. An average of 40.8 TW of advective heat is supplied through this margin. The calculations showed the predominance of annual heat influx due to advection over heat loss from the sea surface. This excess heat influx resulted in an estimated increase in the water temperature of the BS from 1993 to 2018 at a rate of 0.28 °C per year (taking into account the heat consumption for ice melting). In conclusion, it can be argued that the analysis has validated the hypothesis proposed in the article about compensation of heat losses from the surface of the BS by advective heat flow. The hypothesis is quantitatively confirmed by calculations on a simple box model (with an accuracy of up to an order of magnitude) based on atmospheric and oceanic reanalysis data. The ERA5 and GLORYS12V1 reanalysis data reliably describe the basic patterns of observed variability of ocean, sea ice and atmospheric parameters in the Barents Sea. С начала 2000-х ... |
format | Article in Journal/Newspaper |
genre | Arctic Barents Sea Bear Island Nordkapp Norwegian Sea Polar Research Sea ice |
genre_facet | Arctic Barents Sea Bear Island Nordkapp Norwegian Sea Polar Research Sea ice |
geographic | Barents Sea Bear Island Norwegian Sea |
geographic_facet | Barents Sea Bear Island Norwegian Sea |
id | ftjaaresearch:oai:oai.aari.elpub.ru:article/637 |
institution | Open Polar |
language | Russian |
long_lat | ENVELOPE(-67.250,-67.250,-68.151,-68.151) |
op_collection_id | ftjaaresearch |
op_relation | https://www.aaresearch.science/jour/article/view/637/294 Lind S., Ingvaldsen R.B., Furevik T. Arctic warming hotspot in the northern Barents Sea linked to declining sea–ice import. Nature Climate Change. 2018;8(7):634–639. https://doi.org/10.1038/s41558-018-0205-y Arthun M., Onarheim I.H., Dörr J., Eldevik T. The seasonal and regional transition to an ice‐free Arctic. Geophysical Research Letters. 2021;48(1):e2020GL090825. https://doi.org/10.1029/2020GL090825 Иванов В.В., Архипкин В.С., Лемешко Е.М., Мысленков С.А., Смирнов А.В., Суркова Г.В., Тузов Ф.К., Чечин Д.Г., Шестакова А.А. Изменение гидрологических условий в Баренцевом море как индикатор климатических трендов в евразийской Арктике в 21-м веке. Вестн. Моск. ун-та. Сер. 5. Геогр. 2022;1:13–25. Moore F.C., Lacasse K., MachK. J., Shin Y.A., Gross L.J., Beckage B. Determinants of emissions pathways in the coupled climate–social system. Nature. 2022;603(7899):103–111. https://doi.org/10.1038/s41586-022-04423-8 Skagseth Ø., Eldevik T., Årthun M., Asbjørnsen H., Lien V.S., Smedsrud L.H. Reduced efficiency of the Barents Sea cooling machine. Nature Climate Change. 2020;10(7):661–666. https://doi.org/10.1038/s41558-020-0772-6 Ivanov V.V., Tuzov F.K. Formation of dense water dome over the Central Bank under conditions of reduced ice cover in the Barents Sea. Deep Sea Research Part I: Oceanographic Research Papers. 2021;175:103590. https://doi.org/10.1016/j.dsr.2021.103590 Трофимов А.Г. Современные тенденции изменения океанографических условий Баренцева моря. Труды ВНИРО. 2021;186:101–118. https://doi.org/10.36038/2307-3497-2021-186-101-118 Серых И.В., Костяной А.Г. О климатических изменениях температуры Баренцева моря и их возможных причинах. В кн.: А.П. Лисицын (ред.) Система Баренцева моря. М.: ГЕОС; 2021. С. 166–179. Будыко М.И. Тепловой баланс земной поверхности. Л.: Гидрометеоиздат;1956. 256 с. Ашик И.М. (ред.). Моря Российской Арктики в современных климатических условиях. СПб.: ААНИИ; 2021. 360 с. Ожигин В.К., Ившин В.А., Трофимов А.Г., Карсаков А.Л., Анциферов М.Т. (ред). Воды Баренцева моря: структура, циркуляция, изменчивость. Мурманск: Изд-во ПИНРО; 2016. 260 с. Никифоров Е.Г., Шпайхер А.О. Закономерности формирования крупномасштабных колебаний гидрологического режима Северного Ледовитого океана. Л.: Гидрометеоиздат; 1980. 270 с. Ingvaldsen R., Loeng H., Asplin L. Variability in the Atlantic inflow to the Barents Sea based on a one-year time series from moored current meters. Continental Shelf Research. 2002;22(3):505–519. https://doi.org/10.1016/S0278-4343(01)00070-X Dörr J.S., Årthun M., EldevikT., Madonna E. Mechanisms of regional winter sea‐ice variability in a warming Arctic. Journal of Climate. 2021;34(21):8635–8653. https://doi.org/10.1175/JCLI‐D‐21‐0149.1 Årthun M., Eldevik T., Smedsrud L.H., Skagseth Ø., Ingvaldsen R.B. Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. Journal of Climate. 2012;25(13):4736– 4743. https://doi.org/10.1175/JCLI-D-11-00466.1 Sorokina S.A., Li C., Wettstein J.J., Kvamstø N.G. Observed atmospheric coupling between Barents Sea ice and the warm Arctic cold-Siberian anomaly pattern. Journal of Climate. 2016;29(2):495– 511. https://doi.org/10.1175/JCLI-D-15-0046.1 Cai Z., Yoy Q., Chen H.W., Zhang R., Chen D., Chen J., Kang S., Cohen J. Amplified wintertime Barents Sea warming linked to intensified Barents oscillation. Environmental Research Letters. 2022;17(4):044068. https://doi.org/10.1088/1748-9326/ac5bb3 ERA5 reanalysis (European analysis, version 5). https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels (accessed 10.02.2022). Терзиев Ф.С., Гирдюка Г.В. Гидрометеорология и гидрохимия морей СССР. Том 1. Баренцево море Вып. 1. Л.: Гидрометеоиздат; 1990. 280 с. Эзау И.Н., Чернокульский А.В. Поля конвективной облачности в Атлантическом секторе Арктики: спутниковые и наземные наблюдения. Исследование Земли из космоса. 2015;2:49–63. Narizhnaya A., Chernokulsky A. Cloud characteristics during intense cold air outbreaks over the Barents sea based on satellite data. Atmosphere. 2024:15(3):317. https://doi.org/10.3390/atmos15030317 Сумкина А.А., Иванов В.В., Кивва К.К. Тепловой баланс поверхности Баренцева моря в холодный период года. Вестник Московского университета. Серия 5. География. 2024;(3):123–134. https://doi.org/10.55959/MSU0579-9414.5.79.3.10 Сумкина А.А., Кивва К.К., Иванов В.В., Смирнов А.В. Сезонное очищение ото льда Баренцева моря и его зависимость от адвекции тепла Атлантическими водами. Фундаментальная и прикладная гидрофизика. 2022;15(1):82–97. https://doi.org/10.59887/fpg/1krp-xbuk-6gpz Sumkina A.A., Kivva K.K., Ivanov V.V. Seasonality of heat exchange on the Barents sea surface. Oceanology. 2023;63(Suppl 1):S65–S71. https://doi.org/10.1134/S0001437023070196 Суркова Г.В., Романенко В.А. Изменение климата и теплообмен между атмосферой и океаном в Арктике на примере Баренцева и Карского морей. Проблемы Арктики и Антарктики. 2021;67(3):280–292. https://doi.org/10.30758/0555-2648-2021-67-3-280-292 Polyakov I.V., Ingvaldsen R.B., Pnyushkov A.V., Bhatt U.S., Francis J.A., Janout M., Kwok R., Skagseth Ø. Fluctuating Atlantic inflows modulate Arctic atlantification. Science. 2023;381:972– 979. https://doi.org/10.1126/science.adh5158 Daily Global Physical Bulletin at 1/12. http://bulletin.mercator-ocean.fr/en/PSY4#3/75.50/-51.33 (accessed 10.05.2024). Loeng H. Features of the physical oceanographic conditions of the Barents Sea. Polar research. 1991;10(1):5–18. https://doi.org/10.3402/polar.v10i1.672 Bengtsson L., Semenov V.A., Johannessen O.M. The early-twentieth-century warming in the Arctic — a possible mechanism. Journal of Climate. 2004;17(20):4045–4057. https://doi.org/10.1175/1520-0442(2004)0172.0.CO;2 Arthun M., Schrum C. Ocean surface heat flux variability in the Barents Sea. Journal of Marine Systems. 2010;83(1–2):88–98. https://doi.org/10.1016/j.jmarsys.2010.07.003 Добровольский А.Д., Залогин Б. С. Моря СССР. М.: Изд-во Московского ун-та; 1982. 192 с. Gill A. E. Atmosphere-ocean dynamics. Cambridge: Academic press; 1982. 660 p. Доронин Ю.П., Хейсин Д.Е. Морской лед. Л.: Гидрометеоиздат; 1975. 320 c. Maykut G.A. The surface heat and salt balance. In: N. Untersteiner (ed.). The geophysics of sea ice. New York: Plenum; 1986. P. 395–463. Smedsrud L.H., Esau I., Ingvaldsen R.B., Eldevik T., Haugan P.M., Li C., Lien V.S., Olsen A., Omar A.M., Otterå O.H., Risebrobakken B., Sandø A.B., Semenov V.A., Sorokina S.A. The role of the Barents Sea in the Arctic climate system. Reviews of Geophysics. 2013;51(3):415–449. https://doi.org/10.1002/rog.20017 https://www.aaresearch.science/jour/article/view/637 |
op_rights | Authors retain the copyright of their papers without restriction and grant the Arctic and Antarctic Research (Russia) journal right of first publication with the work simultaneously licensed under the the CC BY NC 4.0 Creative Commons Attribution License. Авторы, публикующиеся в данном Журнале, сохраняют авторские права на свое произведение и предоставляют Журналу право публикации на условиях лицензии Creative Commons Attribution International 4.0 CC-BY, которая позволяет неограниченно использовать произведения при условии указания авторства и ссылки на оригинальную публикацию в Журнале. |
op_source | Arctic and Antarctic Research; Том 70, № 3 (2024); 310-322 Проблемы Арктики и Антарктики; Том 70, № 3 (2024); 310-322 2618-6713 0555-2648 |
publishDate | 2024 |
publisher | Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт |
record_format | openpolar |
spelling | ftjaaresearch:oai:oai.aari.elpub.ru:article/637 2025-04-06T14:41:33+00:00 Relative contribution of the ocean-air heat exchange and advective heat transport to the increase of the Barents Sea water temperature in the early 21st century Относительные вклады теплообмена на границе моря и атмосферы и адвективного переноса тепла в повышение температуры вод Баренцева моря в начале XXI в. A. A. Sumkina A. V. Smirnov K. K. Kivva V. V. Ivanov А. А. Сумкина А. В. Смирнов К. К. Кивва В. В. Иванов The study was supported by the Russian Science Foundation grant 24-17-00041 Исследование выполнено при поддержке гранта РНФ 24-17-00041 2024-09-27 application/pdf https://www.aaresearch.science/jour/article/view/637 https://doi.org/10.30758/0555-2648-2024-70-3-310-322 rus rus Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт https://www.aaresearch.science/jour/article/view/637/294 Lind S., Ingvaldsen R.B., Furevik T. Arctic warming hotspot in the northern Barents Sea linked to declining sea–ice import. Nature Climate Change. 2018;8(7):634–639. https://doi.org/10.1038/s41558-018-0205-y Arthun M., Onarheim I.H., Dörr J., Eldevik T. The seasonal and regional transition to an ice‐free Arctic. Geophysical Research Letters. 2021;48(1):e2020GL090825. https://doi.org/10.1029/2020GL090825 Иванов В.В., Архипкин В.С., Лемешко Е.М., Мысленков С.А., Смирнов А.В., Суркова Г.В., Тузов Ф.К., Чечин Д.Г., Шестакова А.А. Изменение гидрологических условий в Баренцевом море как индикатор климатических трендов в евразийской Арктике в 21-м веке. Вестн. Моск. ун-та. Сер. 5. Геогр. 2022;1:13–25. Moore F.C., Lacasse K., MachK. J., Shin Y.A., Gross L.J., Beckage B. Determinants of emissions pathways in the coupled climate–social system. Nature. 2022;603(7899):103–111. https://doi.org/10.1038/s41586-022-04423-8 Skagseth Ø., Eldevik T., Årthun M., Asbjørnsen H., Lien V.S., Smedsrud L.H. Reduced efficiency of the Barents Sea cooling machine. Nature Climate Change. 2020;10(7):661–666. https://doi.org/10.1038/s41558-020-0772-6 Ivanov V.V., Tuzov F.K. Formation of dense water dome over the Central Bank under conditions of reduced ice cover in the Barents Sea. Deep Sea Research Part I: Oceanographic Research Papers. 2021;175:103590. https://doi.org/10.1016/j.dsr.2021.103590 Трофимов А.Г. Современные тенденции изменения океанографических условий Баренцева моря. Труды ВНИРО. 2021;186:101–118. https://doi.org/10.36038/2307-3497-2021-186-101-118 Серых И.В., Костяной А.Г. О климатических изменениях температуры Баренцева моря и их возможных причинах. В кн.: А.П. Лисицын (ред.) Система Баренцева моря. М.: ГЕОС; 2021. С. 166–179. Будыко М.И. Тепловой баланс земной поверхности. Л.: Гидрометеоиздат;1956. 256 с. Ашик И.М. (ред.). Моря Российской Арктики в современных климатических условиях. СПб.: ААНИИ; 2021. 360 с. Ожигин В.К., Ившин В.А., Трофимов А.Г., Карсаков А.Л., Анциферов М.Т. (ред). Воды Баренцева моря: структура, циркуляция, изменчивость. Мурманск: Изд-во ПИНРО; 2016. 260 с. Никифоров Е.Г., Шпайхер А.О. Закономерности формирования крупномасштабных колебаний гидрологического режима Северного Ледовитого океана. Л.: Гидрометеоиздат; 1980. 270 с. Ingvaldsen R., Loeng H., Asplin L. Variability in the Atlantic inflow to the Barents Sea based on a one-year time series from moored current meters. Continental Shelf Research. 2002;22(3):505–519. https://doi.org/10.1016/S0278-4343(01)00070-X Dörr J.S., Årthun M., EldevikT., Madonna E. Mechanisms of regional winter sea‐ice variability in a warming Arctic. Journal of Climate. 2021;34(21):8635–8653. https://doi.org/10.1175/JCLI‐D‐21‐0149.1 Årthun M., Eldevik T., Smedsrud L.H., Skagseth Ø., Ingvaldsen R.B. Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. Journal of Climate. 2012;25(13):4736– 4743. https://doi.org/10.1175/JCLI-D-11-00466.1 Sorokina S.A., Li C., Wettstein J.J., Kvamstø N.G. Observed atmospheric coupling between Barents Sea ice and the warm Arctic cold-Siberian anomaly pattern. Journal of Climate. 2016;29(2):495– 511. https://doi.org/10.1175/JCLI-D-15-0046.1 Cai Z., Yoy Q., Chen H.W., Zhang R., Chen D., Chen J., Kang S., Cohen J. Amplified wintertime Barents Sea warming linked to intensified Barents oscillation. Environmental Research Letters. 2022;17(4):044068. https://doi.org/10.1088/1748-9326/ac5bb3 ERA5 reanalysis (European analysis, version 5). https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels (accessed 10.02.2022). Терзиев Ф.С., Гирдюка Г.В. Гидрометеорология и гидрохимия морей СССР. Том 1. Баренцево море Вып. 1. Л.: Гидрометеоиздат; 1990. 280 с. Эзау И.Н., Чернокульский А.В. Поля конвективной облачности в Атлантическом секторе Арктики: спутниковые и наземные наблюдения. Исследование Земли из космоса. 2015;2:49–63. Narizhnaya A., Chernokulsky A. Cloud characteristics during intense cold air outbreaks over the Barents sea based on satellite data. Atmosphere. 2024:15(3):317. https://doi.org/10.3390/atmos15030317 Сумкина А.А., Иванов В.В., Кивва К.К. Тепловой баланс поверхности Баренцева моря в холодный период года. Вестник Московского университета. Серия 5. География. 2024;(3):123–134. https://doi.org/10.55959/MSU0579-9414.5.79.3.10 Сумкина А.А., Кивва К.К., Иванов В.В., Смирнов А.В. Сезонное очищение ото льда Баренцева моря и его зависимость от адвекции тепла Атлантическими водами. Фундаментальная и прикладная гидрофизика. 2022;15(1):82–97. https://doi.org/10.59887/fpg/1krp-xbuk-6gpz Sumkina A.A., Kivva K.K., Ivanov V.V. Seasonality of heat exchange on the Barents sea surface. Oceanology. 2023;63(Suppl 1):S65–S71. https://doi.org/10.1134/S0001437023070196 Суркова Г.В., Романенко В.А. Изменение климата и теплообмен между атмосферой и океаном в Арктике на примере Баренцева и Карского морей. Проблемы Арктики и Антарктики. 2021;67(3):280–292. https://doi.org/10.30758/0555-2648-2021-67-3-280-292 Polyakov I.V., Ingvaldsen R.B., Pnyushkov A.V., Bhatt U.S., Francis J.A., Janout M., Kwok R., Skagseth Ø. Fluctuating Atlantic inflows modulate Arctic atlantification. Science. 2023;381:972– 979. https://doi.org/10.1126/science.adh5158 Daily Global Physical Bulletin at 1/12. http://bulletin.mercator-ocean.fr/en/PSY4#3/75.50/-51.33 (accessed 10.05.2024). Loeng H. Features of the physical oceanographic conditions of the Barents Sea. Polar research. 1991;10(1):5–18. https://doi.org/10.3402/polar.v10i1.672 Bengtsson L., Semenov V.A., Johannessen O.M. The early-twentieth-century warming in the Arctic — a possible mechanism. Journal of Climate. 2004;17(20):4045–4057. https://doi.org/10.1175/1520-0442(2004)0172.0.CO;2 Arthun M., Schrum C. Ocean surface heat flux variability in the Barents Sea. Journal of Marine Systems. 2010;83(1–2):88–98. https://doi.org/10.1016/j.jmarsys.2010.07.003 Добровольский А.Д., Залогин Б. С. Моря СССР. М.: Изд-во Московского ун-та; 1982. 192 с. Gill A. E. Atmosphere-ocean dynamics. Cambridge: Academic press; 1982. 660 p. Доронин Ю.П., Хейсин Д.Е. Морской лед. Л.: Гидрометеоиздат; 1975. 320 c. Maykut G.A. The surface heat and salt balance. In: N. Untersteiner (ed.). The geophysics of sea ice. New York: Plenum; 1986. P. 395–463. Smedsrud L.H., Esau I., Ingvaldsen R.B., Eldevik T., Haugan P.M., Li C., Lien V.S., Olsen A., Omar A.M., Otterå O.H., Risebrobakken B., Sandø A.B., Semenov V.A., Sorokina S.A. The role of the Barents Sea in the Arctic climate system. Reviews of Geophysics. 2013;51(3):415–449. https://doi.org/10.1002/rog.20017 https://www.aaresearch.science/jour/article/view/637 Authors retain the copyright of their papers without restriction and grant the Arctic and Antarctic Research (Russia) journal right of first publication with the work simultaneously licensed under the the CC BY NC 4.0 Creative Commons Attribution License. Авторы, публикующиеся в данном Журнале, сохраняют авторские права на свое произведение и предоставляют Журналу право публикации на условиях лицензии Creative Commons Attribution International 4.0 CC-BY, которая позволяет неограниченно использовать произведения при условии указания авторства и ссылки на оригинальную публикацию в Журнале. Arctic and Antarctic Research; Том 70, № 3 (2024); 310-322 Проблемы Арктики и Антарктики; Том 70, № 3 (2024); 310-322 2618-6713 0555-2648 тепловой баланс Barents Sea climate change heat balance oceanic advection ocean-air interaction reanalysis sea ice Баренцево море взаимодействие океана и атмосферы изменение климата ледяной покров реанализ Северный Ледовитый океан info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2024 ftjaaresearch 2025-03-10T07:54:42Z The annual water temperature in the major water masses of the Barents Sea (BS) has significantly increased since the early 2000s. Advective heat transport from the neighboring water areas and heat exchange through the sea surface are the major factors, which shape the hydrological conditions in the BS. The paper estimates the contributions of heat exchange at the sea-atmosphere boundary and advective heat transport to changes in the average water temperature of the BS for the entire sea area. The average annual heat balance of the BS is calculated using atmospheric and oceanic reanalysis data. The change in the average temperature of the BS water is estimated taking into account the heat consumption for ice melting. The average surface heat balance from 1993 to 2018 was negative throughout the entire sea area: –70…–100 W/m2 in the south and –10…–20 W/m2 in the north. The advective heat supply was calculated for 9 straits with neighboring water areas. The determining source of advective heat is the influx of Atlantic waters from the Norwegian Sea between Cape Nordkapp and Bear Island. An average of 40.8 TW of advective heat is supplied through this margin. The calculations showed the predominance of annual heat influx due to advection over heat loss from the sea surface. This excess heat influx resulted in an estimated increase in the water temperature of the BS from 1993 to 2018 at a rate of 0.28 °C per year (taking into account the heat consumption for ice melting). In conclusion, it can be argued that the analysis has validated the hypothesis proposed in the article about compensation of heat losses from the surface of the BS by advective heat flow. The hypothesis is quantitatively confirmed by calculations on a simple box model (with an accuracy of up to an order of magnitude) based on atmospheric and oceanic reanalysis data. The ERA5 and GLORYS12V1 reanalysis data reliably describe the basic patterns of observed variability of ocean, sea ice and atmospheric parameters in the Barents Sea. С начала 2000-х ... Article in Journal/Newspaper Arctic Barents Sea Bear Island Nordkapp Norwegian Sea Polar Research Sea ice Arctic and Antarctic Research Barents Sea Bear Island ENVELOPE(-67.250,-67.250,-68.151,-68.151) Norwegian Sea |
spellingShingle | тепловой баланс Barents Sea climate change heat balance oceanic advection ocean-air interaction reanalysis sea ice Баренцево море взаимодействие океана и атмосферы изменение климата ледяной покров реанализ Северный Ледовитый океан A. A. Sumkina A. V. Smirnov K. K. Kivva V. V. Ivanov А. А. Сумкина А. В. Смирнов К. К. Кивва В. В. Иванов Relative contribution of the ocean-air heat exchange and advective heat transport to the increase of the Barents Sea water temperature in the early 21st century |
title | Relative contribution of the ocean-air heat exchange and advective heat transport to the increase of the Barents Sea water temperature in the early 21st century |
title_full | Relative contribution of the ocean-air heat exchange and advective heat transport to the increase of the Barents Sea water temperature in the early 21st century |
title_fullStr | Relative contribution of the ocean-air heat exchange and advective heat transport to the increase of the Barents Sea water temperature in the early 21st century |
title_full_unstemmed | Relative contribution of the ocean-air heat exchange and advective heat transport to the increase of the Barents Sea water temperature in the early 21st century |
title_short | Relative contribution of the ocean-air heat exchange and advective heat transport to the increase of the Barents Sea water temperature in the early 21st century |
title_sort | relative contribution of the ocean-air heat exchange and advective heat transport to the increase of the barents sea water temperature in the early 21st century |
topic | тепловой баланс Barents Sea climate change heat balance oceanic advection ocean-air interaction reanalysis sea ice Баренцево море взаимодействие океана и атмосферы изменение климата ледяной покров реанализ Северный Ледовитый океан |
topic_facet | тепловой баланс Barents Sea climate change heat balance oceanic advection ocean-air interaction reanalysis sea ice Баренцево море взаимодействие океана и атмосферы изменение климата ледяной покров реанализ Северный Ледовитый океан |
url | https://www.aaresearch.science/jour/article/view/637 https://doi.org/10.30758/0555-2648-2024-70-3-310-322 |