Arctic polar vortex dynamics during winters 2014/2015 and 2020/2021
The dynamic barrier of the polar vortex contributes to lowering the temperature inside the vortex in the lower stratosphere and prevents the penetration of air masses into the vortex. The presence of a dynamic barrier during winter is one of the criteria determining the possibility of ozone depletio...
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт
2023
|
Subjects: | |
Online Access: | https://www.aaresearch.science/jour/article/view/525 https://doi.org/10.30758/0555-2648-2023-69-2-114-123 |
_version_ | 1828683023312224256 |
---|---|
author | V. V. Zuev E. S. Savelieva A. V. Pavlinsky E. A. Maslennikova |
author2 | This study was supported by the Ministry of Science and Higher Education of the Russian Federation (project № 121031300156-5). |
author_facet | V. V. Zuev E. S. Savelieva A. V. Pavlinsky E. A. Maslennikova |
author_sort | V. V. Zuev |
collection | Arctic and Antarctic Research |
description | The dynamic barrier of the polar vortex contributes to lowering the temperature inside the vortex in the lower stratosphere and prevents the penetration of air masses into the vortex. The presence of a dynamic barrier during winter is one of the criteria determining the possibility of ozone depletion from late winter to spring. We considered the dynamics of the Arctic polar vortex in the winters of 2014/2015 and 2020/2021 at the 50, 30 and 10 hPa levels by the vortex delineation method using the geopotential. In early January 2015 and 2021, sudden stratospheric warmings were recorded as a result of the splitting (4 January 2015) and the significant displacement (5 January 2021) of the polar vortex. In both cases, the weakening of the dynamic barrier of the polar vortex was observed. The polar vortex is characterized by the presence of a dynamic barrier, when the wind speed along the entire edge of the vortex is more than 20, 24 and 30 m/s at the 50, 30 and 10 hPa levels, respectively. A decrease in the average wind speed along the vortex edge below 30, 36 and 45 m/s, at the 50, 30 and 10 hPa levels, respectively, usually indicates a local decrease in the wind speed below 20, 24 and 30 m/s at these levels, i.e., indirectly indicates a weakening of the dynamic barrier. The dynamic barrier of the polar vortex contributes to lowering the temperature inside the vortex in the lower stratosphere and prevents the penetration of air masses into the vortex. The presence of a dynamic barrier during winter is one of the criteria determining the possibility of ozone depletion from late winter to spring. We considered the dynamics of the Arctic polar vortex in the winters of 2014/2015 and 2020/2021 at the 50, 30 and 10 hPa levels by the vortex delineation method using the geopotential. In early January 2015 and 2021, sudden stratospheric warmings were recorded as a result of the splitting (4 January 2015) and the significant displacement (5 January 2021) of the polar vortex. In both cases, the weakening of the dynamic ... |
format | Article in Journal/Newspaper |
genre | Arctic Arctic |
genre_facet | Arctic Arctic |
geographic | Arctic |
geographic_facet | Arctic |
id | ftjaaresearch:oai:oai.aari.elpub.ru:article/525 |
institution | Open Polar |
language | English |
op_collection_id | ftjaaresearch |
op_relation | https://www.aaresearch.science/jour/article/view/525/248 Waugh D.W., Randel W.J. Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics. J. Atmos. Sci. 1999, 56 (11): 1594–1613. doi:10.1175/1520-0469(1999)056<1594:COAAAP>2.0.CO;2. Waugh D.W., Randel W.J., Pawson S., Newman P.A., Nash E.R. Persistence of the lower stratospheric polar vortices. J. Geophys. Res. 1999, 104 (22): 27191–27201. doi:10.1029/1999JD900795. Waugh D.W., Sobel A.H., Polvani L.M. What is the polar vortex and how does it influence weather? Bull. Amer. Meteor. Soc. 2017, 98 (1): 37–44. doi:10.1175/BAMS-D-15-00212.1. Solomon S. Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 1999, 37 (3): 275–316. doi:10.1029/1999RG900008. Manney G.L., Santee M.L., Rex M., Livesey N.J., Pitts M.C., Veefkind P., Nash E.R., Wohltmann I., Lehmann R., Froidevaux L., Poole L.R., Schoeberl M.R., Haffner D.P., Davies J., Dorokhov V., Gernandt H., Johnson B., Kivi R., Kyro E., Larsen N., Levelt P.F., Makshtas A., McElroy C.T., Nakajima H., Parrondo M.C., Tarasick D.W., von der Gathen P., Walker K.A., Zinoviev N.S. Unprecedented Arctic ozone loss in 2011. Nature. 2011, 478 (7370): 469–475. doi:10.1038/nature10556. Solomon S., Kinnison D., Bandoro J., Garcia R. Simulation of polar ozone depletion: An update. J. Geophys. Res. 2015, 120 (15): 7958–7974. doi:10.1002/2015JD023365. Finlayson-Pitts B.J., Pitts J.N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. California: Academic Press, 2000: 969 p. Solomon S., Garcia R.R., Rowland F.S., Wuebbles D.J. On the depletion of Antarctic ozone. Nature. 1986, 321: 755–758. doi:10.1038/321755a0. Solomon S., Portmann R.W., Sasaki T., Hofmann D.J., Thompson D.W.J. Four decades of ozonesonde measurements over Antarctica. J. Geophys. Res. 2005, 110 (21): D21311. doi:10.1029/2005JD005917. Solomon S., Portmann R.W., Thompson D.W.J. Contrasts between Antarctic and Arctic ozone depletion. Proc. Natl. Acad. Sci. USA. 2007, 104 (2): 445–449. doi:10.1073/pnas.0604895104. Solomon S., Haskins J., Ivy D.J., Min F. Fundamental differences between Arctic and Antarctic ozone depletion. Proc. Natl. Acad. Sci. USA. 2014, 111 (17): 6220–6225. doi:10.1073/pnas.1319307111. Manney G.L., Zurek R.W., O’Neill A., Swinbank R. On the motion of air through the stratospheric polar vortex. J. Atmos. Sci. 1994, 51 (20): 2973‒2994. doi:10.1175/1520-0469(1994)051<2973:OTMOAT>2.0.CO;2. Sobel A.H., Plumb R.A., Waugh D.W. Methods of calculating transport across the polar vortex edge. J. Atmos. Sci. 1997, 54 (18): 2241–2260. doi:10.1175/1520-0469(1997)054<2241:MOCTAT>2.0.CO;2. Newman P.A., Nash E.R., Rosenfield J.E. What controls the temperature of the Arctic stratosphere during the spring? J. Geophys. Res. 2001, 106 (17): 19999–20010. doi:10.1029/2000JD000061. Zuev V.V., Savelieva E. Arctic polar vortex dynamics during winter 2006/2007. Polar Sci. 2020, 25: 100532. doi:10.1016/j.polar.2020.100532. Zuev V.V., Savelieva E. The role of the polar vortex strength during winter in Arctic ozone depletion from late winter to spring. Polar Sci. 2019, 22: 100469. doi:10.1016/j.polar.2019.06.001. Limpasuvan V., Thompson D.W.J., Hartmann D.L. The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate. 2004, 17 (13): 2584–2596. doi:10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2. Charlton A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate. 2007, 20 (3): 449–469. doi:10.1175/JCLI3996.1. Charlton A.J., Polvani L.M., Perlwitz J., Sassi F., Manzini E., Shibata K., Pawson S., Nielsen J.E., Rind D. A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations. J. Climate. 2007, 20 (3): 470–488. doi:10.1175/JCLI3994.1. Matthewman N.J., Esler J.G., Charlton-Perez A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure. J. Climate. 2009, 22 (6): 1566‒1585. doi:10.1175/2008JCLI2365.1. Kuttippurath J., Nikulin G. A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010. Atmos. Chem. Phys. 2012, 12 (17): 8115–8129. doi:10.5194/acp-12-8115-2012. Butler A.H., Seidel D.J., Hardiman S.C., Butchart N., Birner T., Match A. Defining Sudden Stratospheric Warmings. Bull. Amer. Meteor. Soc. 2015, 96 (11): 1913–1928. doi:10.1175/BAMS-D-13-00173.1. Ayarzagüena B., Polvani L.M., Langematz U., Akiyoshi H., Bekki S., Butchart N., Dameris M., Deushi M., Hardiman S.C., Jöckel P., Klekociuk A., Marchand M., Michou M., Morgenstern O., O’Connor F.M., Oman L.D., Plummer D.A., Revell L., Rozanov E., Saint-Martin D., Scinocca J., Stenke A., Stone K., Yamashita Y., Yoshida K., Zeng G. No robust evidence of future changes in major stratospheric sudden warmings: a multi-model assessment from CCMI. Atmos. Chem. Phys. 2018, 18 (15): 11277‒11287. doi:10.5194/acp-18-11277-2018. Manney G.L., Lawrence Z.D., Santee M.L., Read W.G., Livesey N.J., Lambert A., Froidevaux L., Pumphrey H.C., Schwartz M.J. A minor sudden stratospheric warming with a major impact: Transport and polar processing in the 2014/2015 Arctic winter. Geophys. Res. Lett. 2015, 42 (18): 7808–7816. doi:10.1002/2015GL065864. Vargin P.N., Guryanov V.V., Lukyanov A.N., Vyzankin A.S. Dynamic Processes of the Arctic Stratosphere in the 2020–2021 Winter. Izv. Atmos. Ocean. Phys. 2021, 57: 568–580. doi:10.1134/S0001433821060098. Lee S.H. The January 2021 sudden stratospheric warming. Weather. 2021, 76 (4): 135–136. doi:10.1002/wea.3966. Zhang C., Grytsai A., Evtushevsky O., Milinevsky G., Andrienko Y., Shulga V., Klekociuk A., Rapoport Y., Han W. Rossby waves in total ozone over the Arctic in 2000–2021. Remote Sens. 2022, 14 (9): 2192. doi:10.3390/rs14092192. Lawrence Z.D., Manney G.L., Wargan K. Reanalysis intercomparisons of stratospheric polar processing diagnostics. Atmos. Chem. Phys. 2018, 18 (18): 13547–13579. doi:10.5194/acp-18-13547-2018. Smith M.L., McDonald A.J. A quantitative measure of polar vortex strength using the function M. J. Geophys. Res. 2014, 119 (10): 5966–5985. doi:10.1002/2013JD020572. Zuev V.V., Savelieva E. Stratospheric polar vortex dynamics according to the vortex delineation method. J. Earth Syst. Sci. 2023, 132 (1): 39. doi:10.1007/s12040-023-02060-x. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G.,Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.-N. The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc. 2020, 146 (729): 1–51. doi:10.1002/qj.3803. Baldwin M.P., Gray L.J., Dunkerton T.J., Hamilton K., Haynes P.H., Randel W.J., Holton J.R., Alexander M.J., Hirota I., Horinouchi T., Jones D.B.A., Kinnersley J.S., Marquardt C., Sato K., Takahashi M. The quasi-biennial oscillation. Rev. Geophys. 2001, 39 (2): 179–229. doi:10.1029/1999RG000073. Zuev V.V., Savelieva E. Antarctic polar vortex dynamics during spring 2002. J. Earth Syst. Sci. 2022, 131 (2): 119. doi:10.1007/s12040-022-01879-0. Zuev V.V., Savelieva E. Antarctic polar vortex dynamics depending on wind speed along the vortex edge. Pure Appl. Geophys. 2022, 179 (6–7): 2609–2616. doi:10.1007/s00024-022-03054-4. Niwano M., Takahashi M. The influence of the equatorial QBO on the Northern Hemisphere winter circulation of a GCM. J. Meteor. Soc. Jpn. 1998, 76 (3): 453–461. doi:10.2151/JMSJ1965.76.3_453. Hampson J., Haynes P. Influence of the equatorial QBO on the extratropical stratosphere. J. Atmos. Sci. 2006, 63 (3): 936–951. doi:10.1175/JAS3657.1. Camp C.D., Tung K.-K. The influence of the solar cycle and QBO on the late-winter stratospheric polar vortex. J. Atmos. Sci. 2007, 64 (4): 1267–1283. doi:10.1175/JAS3883.1. Garfinkel C.I., Hartmann D.L. Effects of the El Niño–Southern Oscillation and the Quasi-Biennial Oscillation on polar temperatures in the stratosphere. J. Geophys. Res. 2007, 112 (19): D19112. doi:10.1029/2007JD008481. Chen W., Wei K. Interannual variability of the winter stratospheric polar vortex in the Northern Hemisphere and their relations to QBO and ENSO. Adv. Atmos. Sci. 2009, 26 (5): 855–863. doi:10.1007/s00376-009-8168-6. Naoe H., Shibata K. Equatorial quasi-biennial oscillation influence on northern winter extratropical circulation. J. Geophys. Res. 2010, 115 (19): D19102. doi:10.1029/2009JD012952. https://www.aaresearch.science/jour/article/view/525 |
op_rights | Authors retain the copyright of their papers without restriction and grant the Arctic and Antarctic Research (Russia) journal right of first publication with the work simultaneously licensed under the the CC BY NC 4.0 Creative Commons Attribution License. Авторы, публикующиеся в данном Журнале, сохраняют авторские права на свое произведение и предоставляют Журналу право публикации на условиях лицензии Creative Commons Attribution International 4.0 CC-BY, которая позволяет неограниченно использовать произведения при условии указания авторства и ссылки на оригинальную публикацию в Журнале. |
op_source | Arctic and Antarctic Research; Том 69, № 2 (2023); 114-123 Проблемы Арктики и Антарктики; Том 69, № 2 (2023); 114-123 2618-6713 0555-2648 |
publishDate | 2023 |
publisher | Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт |
record_format | openpolar |
spelling | ftjaaresearch:oai:oai.aari.elpub.ru:article/525 2025-04-06T14:41:31+00:00 Arctic polar vortex dynamics during winters 2014/2015 and 2020/2021 V. V. Zuev E. S. Savelieva A. V. Pavlinsky E. A. Maslennikova This study was supported by the Ministry of Science and Higher Education of the Russian Federation (project № 121031300156-5). 2023-07-12 application/pdf https://www.aaresearch.science/jour/article/view/525 https://doi.org/10.30758/0555-2648-2023-69-2-114-123 eng eng Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт https://www.aaresearch.science/jour/article/view/525/248 Waugh D.W., Randel W.J. Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics. J. Atmos. Sci. 1999, 56 (11): 1594–1613. doi:10.1175/1520-0469(1999)056<1594:COAAAP>2.0.CO;2. Waugh D.W., Randel W.J., Pawson S., Newman P.A., Nash E.R. Persistence of the lower stratospheric polar vortices. J. Geophys. Res. 1999, 104 (22): 27191–27201. doi:10.1029/1999JD900795. Waugh D.W., Sobel A.H., Polvani L.M. What is the polar vortex and how does it influence weather? Bull. Amer. Meteor. Soc. 2017, 98 (1): 37–44. doi:10.1175/BAMS-D-15-00212.1. Solomon S. Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 1999, 37 (3): 275–316. doi:10.1029/1999RG900008. Manney G.L., Santee M.L., Rex M., Livesey N.J., Pitts M.C., Veefkind P., Nash E.R., Wohltmann I., Lehmann R., Froidevaux L., Poole L.R., Schoeberl M.R., Haffner D.P., Davies J., Dorokhov V., Gernandt H., Johnson B., Kivi R., Kyro E., Larsen N., Levelt P.F., Makshtas A., McElroy C.T., Nakajima H., Parrondo M.C., Tarasick D.W., von der Gathen P., Walker K.A., Zinoviev N.S. Unprecedented Arctic ozone loss in 2011. Nature. 2011, 478 (7370): 469–475. doi:10.1038/nature10556. Solomon S., Kinnison D., Bandoro J., Garcia R. Simulation of polar ozone depletion: An update. J. Geophys. Res. 2015, 120 (15): 7958–7974. doi:10.1002/2015JD023365. Finlayson-Pitts B.J., Pitts J.N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. California: Academic Press, 2000: 969 p. Solomon S., Garcia R.R., Rowland F.S., Wuebbles D.J. On the depletion of Antarctic ozone. Nature. 1986, 321: 755–758. doi:10.1038/321755a0. Solomon S., Portmann R.W., Sasaki T., Hofmann D.J., Thompson D.W.J. Four decades of ozonesonde measurements over Antarctica. J. Geophys. Res. 2005, 110 (21): D21311. doi:10.1029/2005JD005917. Solomon S., Portmann R.W., Thompson D.W.J. Contrasts between Antarctic and Arctic ozone depletion. Proc. Natl. Acad. Sci. USA. 2007, 104 (2): 445–449. doi:10.1073/pnas.0604895104. Solomon S., Haskins J., Ivy D.J., Min F. Fundamental differences between Arctic and Antarctic ozone depletion. Proc. Natl. Acad. Sci. USA. 2014, 111 (17): 6220–6225. doi:10.1073/pnas.1319307111. Manney G.L., Zurek R.W., O’Neill A., Swinbank R. On the motion of air through the stratospheric polar vortex. J. Atmos. Sci. 1994, 51 (20): 2973‒2994. doi:10.1175/1520-0469(1994)051<2973:OTMOAT>2.0.CO;2. Sobel A.H., Plumb R.A., Waugh D.W. Methods of calculating transport across the polar vortex edge. J. Atmos. Sci. 1997, 54 (18): 2241–2260. doi:10.1175/1520-0469(1997)054<2241:MOCTAT>2.0.CO;2. Newman P.A., Nash E.R., Rosenfield J.E. What controls the temperature of the Arctic stratosphere during the spring? J. Geophys. Res. 2001, 106 (17): 19999–20010. doi:10.1029/2000JD000061. Zuev V.V., Savelieva E. Arctic polar vortex dynamics during winter 2006/2007. Polar Sci. 2020, 25: 100532. doi:10.1016/j.polar.2020.100532. Zuev V.V., Savelieva E. The role of the polar vortex strength during winter in Arctic ozone depletion from late winter to spring. Polar Sci. 2019, 22: 100469. doi:10.1016/j.polar.2019.06.001. Limpasuvan V., Thompson D.W.J., Hartmann D.L. The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate. 2004, 17 (13): 2584–2596. doi:10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2. Charlton A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate. 2007, 20 (3): 449–469. doi:10.1175/JCLI3996.1. Charlton A.J., Polvani L.M., Perlwitz J., Sassi F., Manzini E., Shibata K., Pawson S., Nielsen J.E., Rind D. A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations. J. Climate. 2007, 20 (3): 470–488. doi:10.1175/JCLI3994.1. Matthewman N.J., Esler J.G., Charlton-Perez A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure. J. Climate. 2009, 22 (6): 1566‒1585. doi:10.1175/2008JCLI2365.1. Kuttippurath J., Nikulin G. A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010. Atmos. Chem. Phys. 2012, 12 (17): 8115–8129. doi:10.5194/acp-12-8115-2012. Butler A.H., Seidel D.J., Hardiman S.C., Butchart N., Birner T., Match A. Defining Sudden Stratospheric Warmings. Bull. Amer. Meteor. Soc. 2015, 96 (11): 1913–1928. doi:10.1175/BAMS-D-13-00173.1. Ayarzagüena B., Polvani L.M., Langematz U., Akiyoshi H., Bekki S., Butchart N., Dameris M., Deushi M., Hardiman S.C., Jöckel P., Klekociuk A., Marchand M., Michou M., Morgenstern O., O’Connor F.M., Oman L.D., Plummer D.A., Revell L., Rozanov E., Saint-Martin D., Scinocca J., Stenke A., Stone K., Yamashita Y., Yoshida K., Zeng G. No robust evidence of future changes in major stratospheric sudden warmings: a multi-model assessment from CCMI. Atmos. Chem. Phys. 2018, 18 (15): 11277‒11287. doi:10.5194/acp-18-11277-2018. Manney G.L., Lawrence Z.D., Santee M.L., Read W.G., Livesey N.J., Lambert A., Froidevaux L., Pumphrey H.C., Schwartz M.J. A minor sudden stratospheric warming with a major impact: Transport and polar processing in the 2014/2015 Arctic winter. Geophys. Res. Lett. 2015, 42 (18): 7808–7816. doi:10.1002/2015GL065864. Vargin P.N., Guryanov V.V., Lukyanov A.N., Vyzankin A.S. Dynamic Processes of the Arctic Stratosphere in the 2020–2021 Winter. Izv. Atmos. Ocean. Phys. 2021, 57: 568–580. doi:10.1134/S0001433821060098. Lee S.H. The January 2021 sudden stratospheric warming. Weather. 2021, 76 (4): 135–136. doi:10.1002/wea.3966. Zhang C., Grytsai A., Evtushevsky O., Milinevsky G., Andrienko Y., Shulga V., Klekociuk A., Rapoport Y., Han W. Rossby waves in total ozone over the Arctic in 2000–2021. Remote Sens. 2022, 14 (9): 2192. doi:10.3390/rs14092192. Lawrence Z.D., Manney G.L., Wargan K. Reanalysis intercomparisons of stratospheric polar processing diagnostics. Atmos. Chem. Phys. 2018, 18 (18): 13547–13579. doi:10.5194/acp-18-13547-2018. Smith M.L., McDonald A.J. A quantitative measure of polar vortex strength using the function M. J. Geophys. Res. 2014, 119 (10): 5966–5985. doi:10.1002/2013JD020572. Zuev V.V., Savelieva E. Stratospheric polar vortex dynamics according to the vortex delineation method. J. Earth Syst. Sci. 2023, 132 (1): 39. doi:10.1007/s12040-023-02060-x. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G.,Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.-N. The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc. 2020, 146 (729): 1–51. doi:10.1002/qj.3803. Baldwin M.P., Gray L.J., Dunkerton T.J., Hamilton K., Haynes P.H., Randel W.J., Holton J.R., Alexander M.J., Hirota I., Horinouchi T., Jones D.B.A., Kinnersley J.S., Marquardt C., Sato K., Takahashi M. The quasi-biennial oscillation. Rev. Geophys. 2001, 39 (2): 179–229. doi:10.1029/1999RG000073. Zuev V.V., Savelieva E. Antarctic polar vortex dynamics during spring 2002. J. Earth Syst. Sci. 2022, 131 (2): 119. doi:10.1007/s12040-022-01879-0. Zuev V.V., Savelieva E. Antarctic polar vortex dynamics depending on wind speed along the vortex edge. Pure Appl. Geophys. 2022, 179 (6–7): 2609–2616. doi:10.1007/s00024-022-03054-4. Niwano M., Takahashi M. The influence of the equatorial QBO on the Northern Hemisphere winter circulation of a GCM. J. Meteor. Soc. Jpn. 1998, 76 (3): 453–461. doi:10.2151/JMSJ1965.76.3_453. Hampson J., Haynes P. Influence of the equatorial QBO on the extratropical stratosphere. J. Atmos. Sci. 2006, 63 (3): 936–951. doi:10.1175/JAS3657.1. Camp C.D., Tung K.-K. The influence of the solar cycle and QBO on the late-winter stratospheric polar vortex. J. Atmos. Sci. 2007, 64 (4): 1267–1283. doi:10.1175/JAS3883.1. Garfinkel C.I., Hartmann D.L. Effects of the El Niño–Southern Oscillation and the Quasi-Biennial Oscillation on polar temperatures in the stratosphere. J. Geophys. Res. 2007, 112 (19): D19112. doi:10.1029/2007JD008481. Chen W., Wei K. Interannual variability of the winter stratospheric polar vortex in the Northern Hemisphere and their relations to QBO and ENSO. Adv. Atmos. Sci. 2009, 26 (5): 855–863. doi:10.1007/s00376-009-8168-6. Naoe H., Shibata K. Equatorial quasi-biennial oscillation influence on northern winter extratropical circulation. J. Geophys. Res. 2010, 115 (19): D19102. doi:10.1029/2009JD012952. https://www.aaresearch.science/jour/article/view/525 Authors retain the copyright of their papers without restriction and grant the Arctic and Antarctic Research (Russia) journal right of first publication with the work simultaneously licensed under the the CC BY NC 4.0 Creative Commons Attribution License. Авторы, публикующиеся в данном Журнале, сохраняют авторские права на свое произведение и предоставляют Журналу право публикации на условиях лицензии Creative Commons Attribution International 4.0 CC-BY, которая позволяет неограниченно использовать произведения при условии указания авторства и ссылки на оригинальную публикацию в Журнале. Arctic and Antarctic Research; Том 69, № 2 (2023); 114-123 Проблемы Арктики и Антарктики; Том 69, № 2 (2023); 114-123 2618-6713 0555-2648 wind speed at the vortex edge dynamic barrier polar stratospheric clouds vortex area info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2023 ftjaaresearch 2025-03-10T07:54:42Z The dynamic barrier of the polar vortex contributes to lowering the temperature inside the vortex in the lower stratosphere and prevents the penetration of air masses into the vortex. The presence of a dynamic barrier during winter is one of the criteria determining the possibility of ozone depletion from late winter to spring. We considered the dynamics of the Arctic polar vortex in the winters of 2014/2015 and 2020/2021 at the 50, 30 and 10 hPa levels by the vortex delineation method using the geopotential. In early January 2015 and 2021, sudden stratospheric warmings were recorded as a result of the splitting (4 January 2015) and the significant displacement (5 January 2021) of the polar vortex. In both cases, the weakening of the dynamic barrier of the polar vortex was observed. The polar vortex is characterized by the presence of a dynamic barrier, when the wind speed along the entire edge of the vortex is more than 20, 24 and 30 m/s at the 50, 30 and 10 hPa levels, respectively. A decrease in the average wind speed along the vortex edge below 30, 36 and 45 m/s, at the 50, 30 and 10 hPa levels, respectively, usually indicates a local decrease in the wind speed below 20, 24 and 30 m/s at these levels, i.e., indirectly indicates a weakening of the dynamic barrier. The dynamic barrier of the polar vortex contributes to lowering the temperature inside the vortex in the lower stratosphere and prevents the penetration of air masses into the vortex. The presence of a dynamic barrier during winter is one of the criteria determining the possibility of ozone depletion from late winter to spring. We considered the dynamics of the Arctic polar vortex in the winters of 2014/2015 and 2020/2021 at the 50, 30 and 10 hPa levels by the vortex delineation method using the geopotential. In early January 2015 and 2021, sudden stratospheric warmings were recorded as a result of the splitting (4 January 2015) and the significant displacement (5 January 2021) of the polar vortex. In both cases, the weakening of the dynamic ... Article in Journal/Newspaper Arctic Arctic Arctic and Antarctic Research Arctic |
spellingShingle | wind speed at the vortex edge dynamic barrier polar stratospheric clouds vortex area V. V. Zuev E. S. Savelieva A. V. Pavlinsky E. A. Maslennikova Arctic polar vortex dynamics during winters 2014/2015 and 2020/2021 |
title | Arctic polar vortex dynamics during winters 2014/2015 and 2020/2021 |
title_full | Arctic polar vortex dynamics during winters 2014/2015 and 2020/2021 |
title_fullStr | Arctic polar vortex dynamics during winters 2014/2015 and 2020/2021 |
title_full_unstemmed | Arctic polar vortex dynamics during winters 2014/2015 and 2020/2021 |
title_short | Arctic polar vortex dynamics during winters 2014/2015 and 2020/2021 |
title_sort | arctic polar vortex dynamics during winters 2014/2015 and 2020/2021 |
topic | wind speed at the vortex edge dynamic barrier polar stratospheric clouds vortex area |
topic_facet | wind speed at the vortex edge dynamic barrier polar stratospheric clouds vortex area |
url | https://www.aaresearch.science/jour/article/view/525 https://doi.org/10.30758/0555-2648-2023-69-2-114-123 |