Relationship between area and wind speed along the edge of the Antarctic polar vortex
The Antarctic polar vortex forms in autumn, intensifies in the winter-spring period and decays in late spring. Inside the vortex in the lower stratosphere, favorable conditions are created for the annual spring ozone depletion. One of the conditions for the formation of the Antarctic ozone hole is t...
Published in: | Arctic and Antarctic Research |
---|---|
Main Authors: | , , , |
Other Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | Russian |
Published: |
Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт
2022
|
Subjects: | |
Online Access: | https://www.aaresearch.science/jour/article/view/442 https://doi.org/10.30758/0555-2648-2022-68-2-133-141 |
_version_ | 1828680444049096704 |
---|---|
author | V. V. Zuev E. S. Savelieva В. В. Зуев Е. С. Савельева |
author2 | This study was supported by the Russian Science Foundation (project No. 22-27-00002, https://rscf.ru/en/project/22-27-00002/) This study was supported by the Russian Science Foundation (project No. 22-27-00002, https://rscf.ru/en/project/22-27-00002/) Исследование выполнено за счет гранта Российского научного фонда № 22-27-00002, https://rscf.ru/project/22-27-00002 |
author_facet | V. V. Zuev E. S. Savelieva В. В. Зуев Е. С. Савельева |
author_sort | V. V. Zuev |
collection | Arctic and Antarctic Research |
container_issue | 2 |
container_start_page | 133 |
container_title | Arctic and Antarctic Research |
container_volume | 68 |
description | The Antarctic polar vortex forms in autumn, intensifies in the winter-spring period and decays in late spring. Inside the vortex in the lower stratosphere, favorable conditions are created for the annual spring ozone depletion. One of the conditions for the formation of the Antarctic ozone hole is the presence of a dynamic barrier along the vortex edge in the winter-spring period, which contributes to a decrease in temperature inside the vortex (necessary for the existence of polar stratospheric clouds) and prevents the penetration of air masses into the vortex. The dynamic barrier exists when the wind speed along the vortex edge in the lower stratosphere is at least 20 m/s. When the vortex area decreases below 10 million km2 , the dynamic barrier usually weakens, preceded by the vortex breakdown. The purpose of this work is to consider the relationship between the vortex area and the wind speed along the vortex edge using the Antarctic polar vortex as an example. To analyze the dynamics of the Antarctic polar vortex, we used a method based on vortex delineation, which makes it possible to calculate the vortex area and wind speed along the vortex edge using geopotential values determined from the maximum values of temperature gradient and wind speed and, thus, characterizing the polar vortex edges. Seasonal variations in the vortex area are mainly determined by the time of the beginning, peak and end of the polar night. In turn, seasonal changes in wind speed along the edge of the Antarctic vortex are additionally determined by the influence of the temperature of the lower subtropical stratosphere. To eliminate the influence of the seasonal variation, polynomial trends were removed from the time series of the parameters considered. We have shown that the relationship between the vortex area and the wind speed along the vortex edge can be traced for area values of less than 25 million km2 and more than 50 million km2 . At small values of the vortex area (< 25 million km2), during its formation and destruction, ... |
format | Article in Journal/Newspaper |
genre | Antarc* Antarctic Arctic polar night |
genre_facet | Antarc* Antarctic Arctic polar night |
geographic | Antarctic The Antarctic |
geographic_facet | Antarctic The Antarctic |
id | ftjaaresearch:oai:oai.aari.elpub.ru:article/442 |
institution | Open Polar |
language | Russian |
op_collection_id | ftjaaresearch |
op_container_end_page | 141 |
op_doi | https://doi.org/10.30758/0555-2648-2022-68-2-133-14110.30758/0555-2648-2022-68-2 |
op_relation | https://www.aaresearch.science/jour/article/view/442/225 Waugh D.W., Randel W.J. Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics // J. Atmos. Sci. 1999. V. 56. № 11. P. 1594–1613. Waugh D.W., Polvani L.M. Stratospheric polar vortices // The Stratosphere: Dynamics, Transport, and Chemistry. Geophysical Monograph Series. 2010. V. 190. P. 43–57. Waugh D.W., Sobel A.H., Polvani L.M. What is the polar vortex and how does it influence weather? // Bull. Amer. Meteor. Soc. 2017. V. 98. № 1. P. 37–44. Newman P.A. Chemistry and dynamics of the Antarctic ozone hole // The Stratosphere: Dynamics, Transport, and Chemistry. Geophysical Monograph Series. 2010. V. 190. P. 157‒171. Manney G.L., Zurek R.W. On the motion of air through the stratospheric polar vortex // J. Atmos. Sci. 1994. V. 51. № 20. P. 2973‒2994. Sobel A.H., Plumb R.A., Waugh D.W. Methods of calculating transport across the polar vortex edge // J. Atmos. Sci. 1997. V. 54. № 18. P. 2241–2260. Solomon S., Garcia R.R., Rowland F.S., Wuebbles D.J. On the depletion of Antarctic ozone // Nature. 1986. V. 321. P. 755–758. Solomon S. Stratospheric ozone depletion: a review of concepts and history // Rev. Geophys. 1999. V. 37. № 3. P. 275–316. Solomon S., Portmann R.W., Sasaki T., Hofmann D.J., Thompson D.W.J. Four decades of ozonesonde measurements over Antarctica // J. Geophys. Res. 2005. V. 110. № 21. P. D21311. Finlayson-Pitts B.J., Pitts J.N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. California: Academic Press, 2000. 969 p. Newman P.A., Kawa S.R., Nash E.R. On the size of the Antarctic ozone hole // Geophys. Res. Lett. 2004. V. 31. № 21. P. L21104. Charlton A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks // J. Climate. 2007. V. 20. № 3. P. 449–469. Charlton A.J., Polvani L.M., Perlwitz J., Sassi F., Manzini E., Shibata K., Pawson S., Nielsen J.E., Rind D. A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations // J. Climate. 2007. V. 20. № 3. P. 470–488. Matthewman N.J., Esler J.G., Charlton-Perez A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure // J. Climate. 2009. V. 22. № 6. P. 1566‒1585. Abridged final report of the seventh session of the commission for atmospheric sciences, Manila, 27 February — 10 March 1978. WMO Rep. 509. Geneva: WMO, 1978. 113 p. Flury T., Hocke K., Haefele A., Kämpfer N., Lehmann R. Ozone depletion, water vapor increase, and PSC generation at midlatitudes by the 2008 major stratospheric warming // J. Geophys. Res. 2009. V. 114. № 18. P. D18302. Plumb R.A. Planetary waves and the extratropical winter stratosphere // The Stratosphere: Dynamics, Transport, and Chemistry. Geophysical Monograph Series. 2010. V. 190. P. 23–41. Kuttippurath J., Nikulin G. A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010 // Atmos. Chem. Phys. 2012. V. 12. № 17. P. 8115–8129. Zuev V.V., Savelieva E. Arctic polar vortex dynamics during winter 2006/2007 // Polar Sci. 2020. V. 25. P. 100532. Zuev V.V., Savelieva E. Sensitivity of polar stratospheric clouds to the Arctic polar vortex weakening in the lower stratosphere in midwinter // Proc. SPIE. 2021. V. 11916. P. 1191674. Zuev V.V., Savelieva E.S., Pavlinsky A.V. Features of stratospheric polar vortex weakening prior to breakdown // Atmos. Ocean. Opt. 2022. V. 35. № 2. P. 183–186. Zuev V.V., Savelieva E. Antarctic polar vortex dynamics during spring 2002 // J. Earth Syst. Sci. 2022. V. 131. № 2. P. 119. Holton J. An Introduction to Dynamic Meteorology. 4th Edition. California: Academic Press, 2004. 535 p. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz‐Sabater J., Nicolas J., PeubeyC., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., RozumI., Vamborg F., Villaume S., Thépaut J.‐N. The ERA5 global reanalysis // Q. J. Roy. Meteor. Soc. 2020. V. 146. № 729. P. 1–51. Zuev V.V., Savelieva E. The cause of the spring strengthening of the Antarctic polar vortex // Dynam. Atmos. Oceans. 2019. V. 87. P. 101097. https://www.aaresearch.science/jour/article/view/442 |
op_rights | Authors retain the copyright of their papers without restriction and grant the Arctic and Antarctic Research (Russia) journal right of first publication with the work simultaneously licensed under the the CC BY NC 4.0 Creative Commons Attribution License. Авторы, публикующиеся в данном Журнале, сохраняют авторские права на свое произведение и предоставляют Журналу право публикации на условиях лицензии Creative Commons Attribution International 4.0 CC-BY, которая позволяет неограниченно использовать произведения при условии указания авторства и ссылки на оригинальную публикацию в Журнале. |
op_source | Arctic and Antarctic Research; Том 68, № 2 (2022); 133-141 Проблемы Арктики и Антарктики; Том 68, № 2 (2022); 133-141 2618-6713 0555-2648 10.30758/0555-2648-2022-68-2 |
publishDate | 2022 |
publisher | Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт |
record_format | openpolar |
spelling | ftjaaresearch:oai:oai.aari.elpub.ru:article/442 2025-04-06T14:37:37+00:00 Relationship between area and wind speed along the edge of the Antarctic polar vortex Взаимосвязь между площадью и скоростью ветра по границе антарктического полярного вихря V. V. Zuev E. S. Savelieva В. В. Зуев Е. С. Савельева This study was supported by the Russian Science Foundation (project No. 22-27-00002, https://rscf.ru/en/project/22-27-00002/) This study was supported by the Russian Science Foundation (project No. 22-27-00002, https://rscf.ru/en/project/22-27-00002/) Исследование выполнено за счет гранта Российского научного фонда № 22-27-00002, https://rscf.ru/project/22-27-00002 2022-07-03 application/pdf https://www.aaresearch.science/jour/article/view/442 https://doi.org/10.30758/0555-2648-2022-68-2-133-141 rus rus Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт https://www.aaresearch.science/jour/article/view/442/225 Waugh D.W., Randel W.J. Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics // J. Atmos. Sci. 1999. V. 56. № 11. P. 1594–1613. Waugh D.W., Polvani L.M. Stratospheric polar vortices // The Stratosphere: Dynamics, Transport, and Chemistry. Geophysical Monograph Series. 2010. V. 190. P. 43–57. Waugh D.W., Sobel A.H., Polvani L.M. What is the polar vortex and how does it influence weather? // Bull. Amer. Meteor. Soc. 2017. V. 98. № 1. P. 37–44. Newman P.A. Chemistry and dynamics of the Antarctic ozone hole // The Stratosphere: Dynamics, Transport, and Chemistry. Geophysical Monograph Series. 2010. V. 190. P. 157‒171. Manney G.L., Zurek R.W. On the motion of air through the stratospheric polar vortex // J. Atmos. Sci. 1994. V. 51. № 20. P. 2973‒2994. Sobel A.H., Plumb R.A., Waugh D.W. Methods of calculating transport across the polar vortex edge // J. Atmos. Sci. 1997. V. 54. № 18. P. 2241–2260. Solomon S., Garcia R.R., Rowland F.S., Wuebbles D.J. On the depletion of Antarctic ozone // Nature. 1986. V. 321. P. 755–758. Solomon S. Stratospheric ozone depletion: a review of concepts and history // Rev. Geophys. 1999. V. 37. № 3. P. 275–316. Solomon S., Portmann R.W., Sasaki T., Hofmann D.J., Thompson D.W.J. Four decades of ozonesonde measurements over Antarctica // J. Geophys. Res. 2005. V. 110. № 21. P. D21311. Finlayson-Pitts B.J., Pitts J.N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. California: Academic Press, 2000. 969 p. Newman P.A., Kawa S.R., Nash E.R. On the size of the Antarctic ozone hole // Geophys. Res. Lett. 2004. V. 31. № 21. P. L21104. Charlton A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks // J. Climate. 2007. V. 20. № 3. P. 449–469. Charlton A.J., Polvani L.M., Perlwitz J., Sassi F., Manzini E., Shibata K., Pawson S., Nielsen J.E., Rind D. A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations // J. Climate. 2007. V. 20. № 3. P. 470–488. Matthewman N.J., Esler J.G., Charlton-Perez A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure // J. Climate. 2009. V. 22. № 6. P. 1566‒1585. Abridged final report of the seventh session of the commission for atmospheric sciences, Manila, 27 February — 10 March 1978. WMO Rep. 509. Geneva: WMO, 1978. 113 p. Flury T., Hocke K., Haefele A., Kämpfer N., Lehmann R. Ozone depletion, water vapor increase, and PSC generation at midlatitudes by the 2008 major stratospheric warming // J. Geophys. Res. 2009. V. 114. № 18. P. D18302. Plumb R.A. Planetary waves and the extratropical winter stratosphere // The Stratosphere: Dynamics, Transport, and Chemistry. Geophysical Monograph Series. 2010. V. 190. P. 23–41. Kuttippurath J., Nikulin G. A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010 // Atmos. Chem. Phys. 2012. V. 12. № 17. P. 8115–8129. Zuev V.V., Savelieva E. Arctic polar vortex dynamics during winter 2006/2007 // Polar Sci. 2020. V. 25. P. 100532. Zuev V.V., Savelieva E. Sensitivity of polar stratospheric clouds to the Arctic polar vortex weakening in the lower stratosphere in midwinter // Proc. SPIE. 2021. V. 11916. P. 1191674. Zuev V.V., Savelieva E.S., Pavlinsky A.V. Features of stratospheric polar vortex weakening prior to breakdown // Atmos. Ocean. Opt. 2022. V. 35. № 2. P. 183–186. Zuev V.V., Savelieva E. Antarctic polar vortex dynamics during spring 2002 // J. Earth Syst. Sci. 2022. V. 131. № 2. P. 119. Holton J. An Introduction to Dynamic Meteorology. 4th Edition. California: Academic Press, 2004. 535 p. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz‐Sabater J., Nicolas J., PeubeyC., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., RozumI., Vamborg F., Villaume S., Thépaut J.‐N. The ERA5 global reanalysis // Q. J. Roy. Meteor. Soc. 2020. V. 146. № 729. P. 1–51. Zuev V.V., Savelieva E. The cause of the spring strengthening of the Antarctic polar vortex // Dynam. Atmos. Oceans. 2019. V. 87. P. 101097. https://www.aaresearch.science/jour/article/view/442 Authors retain the copyright of their papers without restriction and grant the Arctic and Antarctic Research (Russia) journal right of first publication with the work simultaneously licensed under the the CC BY NC 4.0 Creative Commons Attribution License. Авторы, публикующиеся в данном Журнале, сохраняют авторские права на свое произведение и предоставляют Журналу право публикации на условиях лицензии Creative Commons Attribution International 4.0 CC-BY, которая позволяет неограниченно использовать произведения при условии указания авторства и ссылки на оригинальную публикацию в Журнале. Arctic and Antarctic Research; Том 68, № 2 (2022); 133-141 Проблемы Арктики и Антарктики; Том 68, № 2 (2022); 133-141 2618-6713 0555-2648 10.30758/0555-2648-2022-68-2 скорость ветра vortex area vortex delineation vortex edge wind speed оконтуривание вихрей площадь вихря полярные вихри info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2022 ftjaaresearch https://doi.org/10.30758/0555-2648-2022-68-2-133-14110.30758/0555-2648-2022-68-2 2025-03-10T07:54:42Z The Antarctic polar vortex forms in autumn, intensifies in the winter-spring period and decays in late spring. Inside the vortex in the lower stratosphere, favorable conditions are created for the annual spring ozone depletion. One of the conditions for the formation of the Antarctic ozone hole is the presence of a dynamic barrier along the vortex edge in the winter-spring period, which contributes to a decrease in temperature inside the vortex (necessary for the existence of polar stratospheric clouds) and prevents the penetration of air masses into the vortex. The dynamic barrier exists when the wind speed along the vortex edge in the lower stratosphere is at least 20 m/s. When the vortex area decreases below 10 million km2 , the dynamic barrier usually weakens, preceded by the vortex breakdown. The purpose of this work is to consider the relationship between the vortex area and the wind speed along the vortex edge using the Antarctic polar vortex as an example. To analyze the dynamics of the Antarctic polar vortex, we used a method based on vortex delineation, which makes it possible to calculate the vortex area and wind speed along the vortex edge using geopotential values determined from the maximum values of temperature gradient and wind speed and, thus, characterizing the polar vortex edges. Seasonal variations in the vortex area are mainly determined by the time of the beginning, peak and end of the polar night. In turn, seasonal changes in wind speed along the edge of the Antarctic vortex are additionally determined by the influence of the temperature of the lower subtropical stratosphere. To eliminate the influence of the seasonal variation, polynomial trends were removed from the time series of the parameters considered. We have shown that the relationship between the vortex area and the wind speed along the vortex edge can be traced for area values of less than 25 million km2 and more than 50 million km2 . At small values of the vortex area (< 25 million km2), during its formation and destruction, ... Article in Journal/Newspaper Antarc* Antarctic Arctic polar night Arctic and Antarctic Research Antarctic The Antarctic Arctic and Antarctic Research 68 2 133 141 |
spellingShingle | скорость ветра vortex area vortex delineation vortex edge wind speed оконтуривание вихрей площадь вихря полярные вихри V. V. Zuev E. S. Savelieva В. В. Зуев Е. С. Савельева Relationship between area and wind speed along the edge of the Antarctic polar vortex |
title | Relationship between area and wind speed along the edge of the Antarctic polar vortex |
title_full | Relationship between area and wind speed along the edge of the Antarctic polar vortex |
title_fullStr | Relationship between area and wind speed along the edge of the Antarctic polar vortex |
title_full_unstemmed | Relationship between area and wind speed along the edge of the Antarctic polar vortex |
title_short | Relationship between area and wind speed along the edge of the Antarctic polar vortex |
title_sort | relationship between area and wind speed along the edge of the antarctic polar vortex |
topic | скорость ветра vortex area vortex delineation vortex edge wind speed оконтуривание вихрей площадь вихря полярные вихри |
topic_facet | скорость ветра vortex area vortex delineation vortex edge wind speed оконтуривание вихрей площадь вихря полярные вихри |
url | https://www.aaresearch.science/jour/article/view/442 https://doi.org/10.30758/0555-2648-2022-68-2-133-141 |