Ship operation in brash ice: results of investigations

The paper gives a review of the studies concerned with operation of vessels in brash ice. Recently, the ice conditions have received an ever increasing attention of the researchers related to the fact that shipping in the Arctic regions and freezing seas, as well as in inland waterways has been scal...

Full description

Bibliographic Details
Published in:Arctic and Antarctic Research
Main Authors: K. E. Sazonov, К. Е. Сазонов
Other Authors: Study was implemented within project SIMREC “Simulator for Improving Cross-border Oil Spill Response in Extreme Conditions”. Project are co-funded by the European Union, the Russian Feder, Исследование выполнено по Проекту SIMREC “Simulator for Improving Cross-border Oil Spill Response in Extreme Conditions”. Проект софинансируется Европейским Союзом, Российской Федерацией и Республикой Финляндия.
Format: Article in Journal/Newspaper
Language:Russian
Published: Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт 2021
Subjects:
Online Access:https://www.aaresearch.science/jour/article/view/406
https://doi.org/10.30758/0555-2648-2021-67-4-406-424
id ftjaaresearch:oai:oai.aari.elpub.ru:article/406
record_format openpolar
institution Open Polar
collection Arctic and Antarctic Research
op_collection_id ftjaaresearch
language Russian
topic тертый лед
ice basin
ice resistance
method of discrete elements
propeller
ледовое сопротивление
ледовый бассейн
метод дискретных элементов
spellingShingle тертый лед
ice basin
ice resistance
method of discrete elements
propeller
ледовое сопротивление
ледовый бассейн
метод дискретных элементов
K. E. Sazonov
К. Е. Сазонов
Ship operation in brash ice: results of investigations
topic_facet тертый лед
ice basin
ice resistance
method of discrete elements
propeller
ледовое сопротивление
ледовый бассейн
метод дискретных элементов
description The paper gives a review of the studies concerned with operation of vessels in brash ice. Recently, the ice conditions have received an ever increasing attention of the researchers related to the fact that shipping in the Arctic regions and freezing seas, as well as in inland waterways has been scaled up. One of the important fields of brash ice studies is specifics of sailing under these conditions and primarily determination of the ship ice resistance. The paper shows that theoretical methods combined with physical modeling in ice basins are used for determination of the ship ice resistance under brash ice conditions. The paper traces the evolution of theoretical models utilized for calculations. It is mentioned that the models are mainly based on loose material mechanics. A rapidly developing computer modeling of ship motion in brash ice based on discrete element method is considered. Physical modeling techniques used for modeling brash ice in ice basin are described, and challenges of experimental investigations are discussed. It is pointed out that experimental studies in ice basin can provide valuable data not only about ship ice resistance but also about the mechanisms giving rise to ice channels filled with brash ice. The paper describes the methods for studying operation of ship propellers in brash ice conditions. It is concluded that further research into brash ice is needed. В статье приведен обзор исследований, посвященных изучению движения судов в тертых льдах. Показано, что для определения ледового сопротивления судна в указанных условиях используются теоретические методы исследования и метод физического моделирования в ледовых бассейнах. В работе прослежена эволюция теоретических моделей, применяемых для расчета. Описаны методы физического моделирования тертого льда в ледовом бассейне, обсуждены основные трудности, возникающие при экспериментальных исследованиях. Рассмотрено активно развивающееся в настоящее время компьютерное моделирование движения судна в тертых льдах на основе методов ...
author2 Study was implemented within project SIMREC “Simulator for Improving Cross-border Oil Spill Response in Extreme Conditions”. Project are co-funded by the European Union, the Russian Feder
Исследование выполнено по Проекту SIMREC “Simulator for Improving Cross-border Oil Spill Response in Extreme Conditions”. Проект софинансируется Европейским Союзом, Российской Федерацией и Республикой Финляндия.
format Article in Journal/Newspaper
author K. E. Sazonov
К. Е. Сазонов
author_facet K. E. Sazonov
К. Е. Сазонов
author_sort K. E. Sazonov
title Ship operation in brash ice: results of investigations
title_short Ship operation in brash ice: results of investigations
title_full Ship operation in brash ice: results of investigations
title_fullStr Ship operation in brash ice: results of investigations
title_full_unstemmed Ship operation in brash ice: results of investigations
title_sort ship operation in brash ice: results of investigations
publisher Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт
publishDate 2021
url https://www.aaresearch.science/jour/article/view/406
https://doi.org/10.30758/0555-2648-2021-67-4-406-424
geographic Arctic
geographic_facet Arctic
genre Arctic
Arctic
genre_facet Arctic
Arctic
op_source Arctic and Antarctic Research; Том 67, № 4 (2021); 406-424
Проблемы Арктики и Антарктики; Том 67, № 4 (2021); 406-424
2618-6713
0555-2648
10.30758/0555-2648-2021-67-4
op_relation https://www.aaresearch.science/jour/article/view/406/216
Безопасность плавания во льдах / А.П. Смирнов, Б.С. Майнагашев, В.А. Голохвастов, Б.М. Соколов. М.: Транспорт, 1993. 335 с.
Сазонов К.Е. Развитие ледовой ходкости судов в ХХI веке // Труды Крыловского государственного научного центра. 2018. Вып. 2 (384). С. 9–28. doi:10.24937/2542-2324-2018-2-384-9-28.
Mellor M. Ship resistance in thick brash ice // Cold Reg. Sci. Technol. 1980. V. 3 (4). P. 305–321.
Kannari P. Measurements of characteristics and propulsion performance of a ship in old iceclogged channels // Proc. of the 7 International Conference on Port and Ocean Engineering in Arctic Conditions, POAC-83, Espoo, Finland. 1983.V. II. Р. 600–619.
Sandkvist J. Brash ice behaviour in frequented ship channels. WREL report series A. University of Luleå. 1986. V. 139. 132 р.
Ettema R., Huang H.-P. Ice Formation in Frequently Transited Navigation Channels. CRREL Special Report 90-40. 1990. 120 p.
Riska K., Wilhelmson M., Englund K., Leiviska T. Performance of Merchant Vessels in the Baltic. Winter Navigation Research Board, Res. Rpt. 1997. V. 52. 72 p.
Karulin E.B., Karulina M.M., Tarovik O.V. Analytical Investigation of Navigation Channel Evolution in Severe Ice Conditions // Proceedings of Ocean and Polar Engineering Conference ISOPE-2018, Sapporo, Japan. URL: https://www.researchgate.net/publication/326190461_Analytical_Investigation_of_Navigation_Channel_Evolution_in_Severe_Ice_Conditions (дата обращения 05.12.2021).
Riska K., Bridges R., Shumovskiy S., Thomas C., Coche E., Bonath V., Tobie A., Chomatas K., Caloba Duarte de Oliveira R. Brash ice growth model — development and validation // Cold Regions Science and Technology. 2019. V. 157. P. 30–41. doi.org/10.1016/j.coldregions.2018.09.004.
Ettema R., Urroz-Aguirre E. Friction and cohesion in ice rubble reviewed // Cold Regions Engineering. 1991. V. 12. P. 317–326.
Bonath V., Zhaka V., Sand B. Field measurements on the behavior of brash ice // Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic Conditions June 9–13, 2019, Delft, The Netherlands. URL: https://www.researchgate.net/publication/41321807_Field_measurements_on_the_behavior_of_brash_ice (дата обращения 05.12.2021).
Matala R., Skogström T. Soil mechanics measurement methods applied in model brash ice // Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic Conditions June 9-13, 2019, Delft, The Netherlands. URL: https://www.researchgate.net/publication/353637533_The_effect_of_ice_fragment_shape_on_model-scale_brash_ice_material_properties_for_ship_model_testing (дата обращения 05.12.2021).
Matala R. Investigation of model-scale brash ice properties // Ocean Engineering. 2021. V. 225. doi.org/10.1016/j.oceaneng.2020.108539
Riska K. The background of the powering requirements in the Finnish — Swedish ice class rules // Maritime Research Seminar’99, VVT Symposium 199, Espoo, Finland. 2000. P. 91–106.
Juva M., Riska K. On the power requirement in the finnish-swedish ice class rules. Winter Navigation Research Board, Res. Rpt. 2002. V. 53. 81 p.
Ice Class Regulations and the Application Thereof TRAFICOM/68863/03.04.01.00/2021. URL: https://www.traficom.fi/en/transport/maritime/ice-classes-ships (дата обращения 05.12.2021).
Цытович Н.А. Механика грунтов. М.: Высшая школа, 1973. 280 с.
Lee J., Kim G., Kim I., Kim D., Byun B. Effect of inter-particle strength on K0 correlation for granular materials // Proceedings of the 5th International Conference on Geotechnical and Geophysical Site Characterisation, ISC 2016 Australian Geomechanics Society, Sydney, Australia. Australian Geomechanics Society. 2016. P. 1003–1008.
Сазонов К.Е. Морская ледотехника. СПб.: СПбГМТУ, 2019. 311 с.
Таровик О.В. Модели для прогнозирования параметров рейсов судов в Арктике: существующие подходы и возможные пути развития // Арктика: экология и экономика. 2021. T. 11. C. 422–435.
Ritvanen H. Analysis of the influence of the channel profile validating the power requirement in the finnish-swedish ice class rules. Winter Navigation Research Board, Res. Rpt. 2014. V. 66. 25 p.
Bridges R. Geometric Model on the Evolution of Brash Ice Channels // Proceedings of the Thirtieth International Ocean and Polar Engineering Conference Shanghai, China, October 11–16, 2020. P. 617–621. URL: https://www.researchgate.net/publication/344774965_Hydrodynamic_analysis_of_a_floating_hybrid_renewable_energy_system (дата обращения 05.12.2021).
Karulina M.M., Karulin E.B., Tarovik O.V. Extension of FSICR method for calculation of ship resistance in brash ice channel // Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic Conditions June 9-13, 2019, Delft, The Netherlands. URL: https://www.researchgate.net/publication/333967969_Extension_of_FSICR_method_for_calculation_of_ship_resistance_in_brash_ice_channel (дата обращения 05.12.2021).
Dobrodeev A.A., Sazonov K.E. Ice resistance calculation method for a ship sailing via brash ice channel // Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic Conditions June 9-13, 2019, Delft, The Netherlands. URL: https://www.researchgate.net/publication/335263770_Ice_resistance_of_ships_in_brash_ice_channel_calculation_method (дата обращения 05.12.2021).
Добродеев А.А., Сазонов К.Е. Метод расчета ледового сопротивления судна при движении в канале тертого льда // Труды Крыловского государственного научного центра. 2019. № 3 (389). С. 11–21. doi:10.24937/2542-2324-2019-3-389-11-21.
Hopkins M.A. Four stages of pressure ridging // J. Geophys. Res. 1998. V. 103 (C10). P. 21883–21891.
Hansen E., Loset S. Modeling floating offshore units moored in broken ice: model description // Cold Regions Science and Technology. 1999. V. 29. P. 97–106.
Lau M., Lawrence K.P., Rothenburg L. Discrete element analysis of ice loads on ships and structures // Ships and Offshore Structures. 2011. V. 6 (3). P. 211–221.
Van den Berg M., Lubbad R. The application of a non-smooth discrete element method in ice rubble modelling // Proceedings of the 23rd International Conference on Port and Ocean Engineering under Arctic Conditions June 14–18, 2015 Trondheim, Norway. URL: https://www.researchgate.net/publication/283095075_The_application_of_a_non-smooth_discrete_element_method_in_ice_rubble_modelling (дата обращения 05.12.2021).
Servin M., Wang D., Lacoursière C., Bodin K. Examining the smooth and nonsmooth discrete element approaches to granular matter // Int. J. Numer. Methods Eng. 2014. URL: https://onlinelibrary.wiley.com/doi/10.1002/nme.4612 (дата обращения 05.12.2021).
Metrikin I., Løset S. Nonsmooth 3D discrete element simulation of a drillship in discontinuous ice // Proceedings of the 22nd International Conference on Port and Ocean Engineering under Arctic Conditions June 9-13, 2013. Espoo, Finland. URL: https://www.researchgate.net/publication/256842759_Nonsmooth_3D_Discrete_Element_Simulation_of_a_Drillship_in_Discontinuous_Ice (дата обращения 05.12.2021).
Konno A., Nakane A., Kanamori S. Validation of numerical estimation of brash ice channel resistance with model test // Proceedings of the 22nd International Conference on Port and Ocean Engineering under Arctic Conditions June 9–13, 2013. Espoo, Finland. URL: https://www.poac.com/ Papers/2013/pdf/POAC13_143.pdf (дата обращения 05.12.2021).
Guo C.Y., Zhang Z.T., Tian T. P., Li X.Y., Zhao D.G. Numerical Simulation on the Resistance Performance of Ice-Going Container Ship Under Brash Ice Conditions // China Ocean Eng. 2018. V. 32. № 5. P. 546–556. doi: https://doi.org/10.1007/s13344-018-0057-2.
Koivurova J. Simulation of Ship-Ice Interaction in a Brash Ice Channel. M. Sc. Thesis. Aalto University, 2020. URL: https://aaltodoc.aalto.fi/handle/123456789/42697 (дата обращения 05.12.2021).
Luo W., Jiang D., Wu T., Guo C., Wang Ch., Deng R., Dai S. Numerical simulation of an ice-strengthened bulk carrier in brash ice channel. URL: https://www.semanticscholar.org/paper/Numerical-simulation-of-an-ice-strengthened-bulk-in-Luo-Jiang/e70263687be90c853fd28207b069bd3d712cabc2 (дата обращения 05.12.2021).
Bridges R., Riska K., Suominen M., Haase A. Experimental Tests on Brash Ice Channel Development // Proceedings of the Thirtieth International Ocean and Polar Engineering Conference Shanghai, China, October 11–16. 2020. P. 639–643.
Matala R. Channel resistance in full scale and in model scale. Winter Navigation Research Board, Res. Rpt. 2020. V. 107. 20 p.
Jeong S.-Y., Jang J., Kang K.-J., Kim H.-S. Implementation of ship performance test in brash ice channel // Ocean Engineering. 2017. V. 140. P. 57–65.
Matsuzawa T., Shimoda H., Wako D., Uto S., He Q., Watanabe S. Load-Varying Methods for Ship Power Estimation in Brash Ice Channel by Ice Tank Model Test // Proceedings of the 24th International Conference on Port and Ocean Engineering under Arctic Conditions June 11–16, 2017, Busan, Korea. URL: https://www.poac.com/Papers/2017/pdf/POAC17_124_Takatoshi.pdf (дата обращения 05.12.2021).
Wang J., Lau M., Lee C. J., Cho S.-R. Modeling of Brash Ice Channel and Tests with Model CCGS Terry Fox // International Journal of Offshore and Polar Engineering. 2009. V. 19. P. 206–213.
Krupina N., Chernov A., Likhomanov V., Maksimova P., Savitskaya A. The ice tank study of ice performance of a large LNGC in the old channel // Proceedings of the 22nd International Conference on Port and Ocean Engineering under Arctic Conditions June 9–13, 2013. Espoo, Finland. URL: https://www.poac.com/Proceedings/2021/POAC21-032.pdf (дата обращения 05.12.2021).
Matala R., Gong H. The effect of ice fragment shape on model-scale brash ice material properties for ship model testing // Proceedings of the 26th International Conference on Port and Ocean Engineering under Arctic Conditions June 14–18, 2021, Moscow, Russia. URL: https://www.researchgate.net/publication/353637533_The_effect_of_ice_fragment_shape_on_model-scale_brash_ice_material_properties_for_ship_model_testing (дата обращения 05.12.2021).
Сазонов К.Е., Добродеев А.А., Чепраков Н.В., Нечаев Д.А., Кильдеев Р.И. Устройство для образования канала моделируемого ледяного покрова в ледовом опытовом бассейне. Патент на изобретение 2737841 C1, 03.12.2020. Заявка № 2020111377 от 17.03.2020.
Von Bock und Polach R., Molyneux D. Model ice: a review of its capacity and identification of knowledge gaps // Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering OMAE2017 June 25–30, 2017, Trondheim, Norway. URL: https://www.researchgate.net/publication/318093280_Model_Ice_A_Review_of_its_Capacity_and_Identification_of_Knowledge_Gaps (дата обращения 05.12.2021).
Kostilainen V. Performance of marine propellers in ice-clogged channels. Winter Navigation Research Board, Res. Rpt. 1981. V. 33. 26 p.
Juurmaa K., Segercrantz H. On Propulsion and its Efficiency in Ice // Sixth Ship Technology and Research (STAR) Symposium, Proceedings SNAME, Ottawa, 1981. P. 229–237.
Борусевич В.О., Русецкий А.А., Сазонов К.Е., Соловьев И.А. Современные гидродинамические лаборатории. СПб.: ФГУП «Крыловский государственный научный центр», 2019. 316 с.
Haskins K.L., Courville Z.R., Sodhi D.S., Stanley J.M., Zabilansky L.J., Story J.M. Interaction between Brash Ice and Boat Propulsion Systems. Cold Regions Research and Engineering Laboratory US Army Engineer Research and Development Center, ERDC TR-14-1. 2014. 85 p.
Karulina M.M., Karulin E.B. Analytical investigation of propeller operation in brash ice // Proceedings of the 26th International Conference on Port and Ocean Engineering under Arctic Conditions June 14–18, 2021, Moscow, Russia. URL: https://www.poac.com/Proceedings/2021/POAC21-032.pdf (дата обращения 05.12.2021).
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_doi https://doi.org/10.30758/0555-2648-2021-67-4-406-42410.30758/0555-2648-2021-67-410.24937/2542-2324-2018-2-384-9-2810.1016/j.coldregions.2018.09.00410.1016/j.oceaneng.2020.10853910.24937/2542-2324-2019-3-389-11-2110.1007/s13344-018-0057-2
container_title Arctic and Antarctic Research
container_volume 67
container_issue 4
container_start_page 406
op_container_end_page 424
_version_ 1802639077389893632
spelling ftjaaresearch:oai:oai.aari.elpub.ru:article/406 2024-06-23T07:48:45+00:00 Ship operation in brash ice: results of investigations Движение судов в тертых льдах: результаты исследований K. E. Sazonov К. Е. Сазонов Study was implemented within project SIMREC “Simulator for Improving Cross-border Oil Spill Response in Extreme Conditions”. Project are co-funded by the European Union, the Russian Feder Исследование выполнено по Проекту SIMREC “Simulator for Improving Cross-border Oil Spill Response in Extreme Conditions”. Проект софинансируется Европейским Союзом, Российской Федерацией и Республикой Финляндия. 2021-12-09 application/pdf https://www.aaresearch.science/jour/article/view/406 https://doi.org/10.30758/0555-2648-2021-67-4-406-424 rus rus Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт https://www.aaresearch.science/jour/article/view/406/216 Безопасность плавания во льдах / А.П. Смирнов, Б.С. Майнагашев, В.А. Голохвастов, Б.М. Соколов. М.: Транспорт, 1993. 335 с. Сазонов К.Е. Развитие ледовой ходкости судов в ХХI веке // Труды Крыловского государственного научного центра. 2018. Вып. 2 (384). С. 9–28. doi:10.24937/2542-2324-2018-2-384-9-28. Mellor M. Ship resistance in thick brash ice // Cold Reg. Sci. Technol. 1980. V. 3 (4). P. 305–321. Kannari P. Measurements of characteristics and propulsion performance of a ship in old iceclogged channels // Proc. of the 7 International Conference on Port and Ocean Engineering in Arctic Conditions, POAC-83, Espoo, Finland. 1983.V. II. Р. 600–619. Sandkvist J. Brash ice behaviour in frequented ship channels. WREL report series A. University of Luleå. 1986. V. 139. 132 р. Ettema R., Huang H.-P. Ice Formation in Frequently Transited Navigation Channels. CRREL Special Report 90-40. 1990. 120 p. Riska K., Wilhelmson M., Englund K., Leiviska T. Performance of Merchant Vessels in the Baltic. Winter Navigation Research Board, Res. Rpt. 1997. V. 52. 72 p. Karulin E.B., Karulina M.M., Tarovik O.V. Analytical Investigation of Navigation Channel Evolution in Severe Ice Conditions // Proceedings of Ocean and Polar Engineering Conference ISOPE-2018, Sapporo, Japan. URL: https://www.researchgate.net/publication/326190461_Analytical_Investigation_of_Navigation_Channel_Evolution_in_Severe_Ice_Conditions (дата обращения 05.12.2021). Riska K., Bridges R., Shumovskiy S., Thomas C., Coche E., Bonath V., Tobie A., Chomatas K., Caloba Duarte de Oliveira R. Brash ice growth model — development and validation // Cold Regions Science and Technology. 2019. V. 157. P. 30–41. doi.org/10.1016/j.coldregions.2018.09.004. Ettema R., Urroz-Aguirre E. Friction and cohesion in ice rubble reviewed // Cold Regions Engineering. 1991. V. 12. P. 317–326. Bonath V., Zhaka V., Sand B. Field measurements on the behavior of brash ice // Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic Conditions June 9–13, 2019, Delft, The Netherlands. URL: https://www.researchgate.net/publication/41321807_Field_measurements_on_the_behavior_of_brash_ice (дата обращения 05.12.2021). Matala R., Skogström T. Soil mechanics measurement methods applied in model brash ice // Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic Conditions June 9-13, 2019, Delft, The Netherlands. URL: https://www.researchgate.net/publication/353637533_The_effect_of_ice_fragment_shape_on_model-scale_brash_ice_material_properties_for_ship_model_testing (дата обращения 05.12.2021). Matala R. Investigation of model-scale brash ice properties // Ocean Engineering. 2021. V. 225. doi.org/10.1016/j.oceaneng.2020.108539 Riska K. The background of the powering requirements in the Finnish — Swedish ice class rules // Maritime Research Seminar’99, VVT Symposium 199, Espoo, Finland. 2000. P. 91–106. Juva M., Riska K. On the power requirement in the finnish-swedish ice class rules. Winter Navigation Research Board, Res. Rpt. 2002. V. 53. 81 p. Ice Class Regulations and the Application Thereof TRAFICOM/68863/03.04.01.00/2021. URL: https://www.traficom.fi/en/transport/maritime/ice-classes-ships (дата обращения 05.12.2021). Цытович Н.А. Механика грунтов. М.: Высшая школа, 1973. 280 с. Lee J., Kim G., Kim I., Kim D., Byun B. Effect of inter-particle strength on K0 correlation for granular materials // Proceedings of the 5th International Conference on Geotechnical and Geophysical Site Characterisation, ISC 2016 Australian Geomechanics Society, Sydney, Australia. Australian Geomechanics Society. 2016. P. 1003–1008. Сазонов К.Е. Морская ледотехника. СПб.: СПбГМТУ, 2019. 311 с. Таровик О.В. Модели для прогнозирования параметров рейсов судов в Арктике: существующие подходы и возможные пути развития // Арктика: экология и экономика. 2021. T. 11. C. 422–435. Ritvanen H. Analysis of the influence of the channel profile validating the power requirement in the finnish-swedish ice class rules. Winter Navigation Research Board, Res. Rpt. 2014. V. 66. 25 p. Bridges R. Geometric Model on the Evolution of Brash Ice Channels // Proceedings of the Thirtieth International Ocean and Polar Engineering Conference Shanghai, China, October 11–16, 2020. P. 617–621. URL: https://www.researchgate.net/publication/344774965_Hydrodynamic_analysis_of_a_floating_hybrid_renewable_energy_system (дата обращения 05.12.2021). Karulina M.M., Karulin E.B., Tarovik O.V. Extension of FSICR method for calculation of ship resistance in brash ice channel // Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic Conditions June 9-13, 2019, Delft, The Netherlands. URL: https://www.researchgate.net/publication/333967969_Extension_of_FSICR_method_for_calculation_of_ship_resistance_in_brash_ice_channel (дата обращения 05.12.2021). Dobrodeev A.A., Sazonov K.E. Ice resistance calculation method for a ship sailing via brash ice channel // Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic Conditions June 9-13, 2019, Delft, The Netherlands. URL: https://www.researchgate.net/publication/335263770_Ice_resistance_of_ships_in_brash_ice_channel_calculation_method (дата обращения 05.12.2021). Добродеев А.А., Сазонов К.Е. Метод расчета ледового сопротивления судна при движении в канале тертого льда // Труды Крыловского государственного научного центра. 2019. № 3 (389). С. 11–21. doi:10.24937/2542-2324-2019-3-389-11-21. Hopkins M.A. Four stages of pressure ridging // J. Geophys. Res. 1998. V. 103 (C10). P. 21883–21891. Hansen E., Loset S. Modeling floating offshore units moored in broken ice: model description // Cold Regions Science and Technology. 1999. V. 29. P. 97–106. Lau M., Lawrence K.P., Rothenburg L. Discrete element analysis of ice loads on ships and structures // Ships and Offshore Structures. 2011. V. 6 (3). P. 211–221. Van den Berg M., Lubbad R. The application of a non-smooth discrete element method in ice rubble modelling // Proceedings of the 23rd International Conference on Port and Ocean Engineering under Arctic Conditions June 14–18, 2015 Trondheim, Norway. URL: https://www.researchgate.net/publication/283095075_The_application_of_a_non-smooth_discrete_element_method_in_ice_rubble_modelling (дата обращения 05.12.2021). Servin M., Wang D., Lacoursière C., Bodin K. Examining the smooth and nonsmooth discrete element approaches to granular matter // Int. J. Numer. Methods Eng. 2014. URL: https://onlinelibrary.wiley.com/doi/10.1002/nme.4612 (дата обращения 05.12.2021). Metrikin I., Løset S. Nonsmooth 3D discrete element simulation of a drillship in discontinuous ice // Proceedings of the 22nd International Conference on Port and Ocean Engineering under Arctic Conditions June 9-13, 2013. Espoo, Finland. URL: https://www.researchgate.net/publication/256842759_Nonsmooth_3D_Discrete_Element_Simulation_of_a_Drillship_in_Discontinuous_Ice (дата обращения 05.12.2021). Konno A., Nakane A., Kanamori S. Validation of numerical estimation of brash ice channel resistance with model test // Proceedings of the 22nd International Conference on Port and Ocean Engineering under Arctic Conditions June 9–13, 2013. Espoo, Finland. URL: https://www.poac.com/ Papers/2013/pdf/POAC13_143.pdf (дата обращения 05.12.2021). Guo C.Y., Zhang Z.T., Tian T. P., Li X.Y., Zhao D.G. Numerical Simulation on the Resistance Performance of Ice-Going Container Ship Under Brash Ice Conditions // China Ocean Eng. 2018. V. 32. № 5. P. 546–556. doi: https://doi.org/10.1007/s13344-018-0057-2. Koivurova J. Simulation of Ship-Ice Interaction in a Brash Ice Channel. M. Sc. Thesis. Aalto University, 2020. URL: https://aaltodoc.aalto.fi/handle/123456789/42697 (дата обращения 05.12.2021). Luo W., Jiang D., Wu T., Guo C., Wang Ch., Deng R., Dai S. Numerical simulation of an ice-strengthened bulk carrier in brash ice channel. URL: https://www.semanticscholar.org/paper/Numerical-simulation-of-an-ice-strengthened-bulk-in-Luo-Jiang/e70263687be90c853fd28207b069bd3d712cabc2 (дата обращения 05.12.2021). Bridges R., Riska K., Suominen M., Haase A. Experimental Tests on Brash Ice Channel Development // Proceedings of the Thirtieth International Ocean and Polar Engineering Conference Shanghai, China, October 11–16. 2020. P. 639–643. Matala R. Channel resistance in full scale and in model scale. Winter Navigation Research Board, Res. Rpt. 2020. V. 107. 20 p. Jeong S.-Y., Jang J., Kang K.-J., Kim H.-S. Implementation of ship performance test in brash ice channel // Ocean Engineering. 2017. V. 140. P. 57–65. Matsuzawa T., Shimoda H., Wako D., Uto S., He Q., Watanabe S. Load-Varying Methods for Ship Power Estimation in Brash Ice Channel by Ice Tank Model Test // Proceedings of the 24th International Conference on Port and Ocean Engineering under Arctic Conditions June 11–16, 2017, Busan, Korea. URL: https://www.poac.com/Papers/2017/pdf/POAC17_124_Takatoshi.pdf (дата обращения 05.12.2021). Wang J., Lau M., Lee C. J., Cho S.-R. Modeling of Brash Ice Channel and Tests with Model CCGS Terry Fox // International Journal of Offshore and Polar Engineering. 2009. V. 19. P. 206–213. Krupina N., Chernov A., Likhomanov V., Maksimova P., Savitskaya A. The ice tank study of ice performance of a large LNGC in the old channel // Proceedings of the 22nd International Conference on Port and Ocean Engineering under Arctic Conditions June 9–13, 2013. Espoo, Finland. URL: https://www.poac.com/Proceedings/2021/POAC21-032.pdf (дата обращения 05.12.2021). Matala R., Gong H. The effect of ice fragment shape on model-scale brash ice material properties for ship model testing // Proceedings of the 26th International Conference on Port and Ocean Engineering under Arctic Conditions June 14–18, 2021, Moscow, Russia. URL: https://www.researchgate.net/publication/353637533_The_effect_of_ice_fragment_shape_on_model-scale_brash_ice_material_properties_for_ship_model_testing (дата обращения 05.12.2021). Сазонов К.Е., Добродеев А.А., Чепраков Н.В., Нечаев Д.А., Кильдеев Р.И. Устройство для образования канала моделируемого ледяного покрова в ледовом опытовом бассейне. Патент на изобретение 2737841 C1, 03.12.2020. Заявка № 2020111377 от 17.03.2020. Von Bock und Polach R., Molyneux D. Model ice: a review of its capacity and identification of knowledge gaps // Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering OMAE2017 June 25–30, 2017, Trondheim, Norway. URL: https://www.researchgate.net/publication/318093280_Model_Ice_A_Review_of_its_Capacity_and_Identification_of_Knowledge_Gaps (дата обращения 05.12.2021). Kostilainen V. Performance of marine propellers in ice-clogged channels. Winter Navigation Research Board, Res. Rpt. 1981. V. 33. 26 p. Juurmaa K., Segercrantz H. On Propulsion and its Efficiency in Ice // Sixth Ship Technology and Research (STAR) Symposium, Proceedings SNAME, Ottawa, 1981. P. 229–237. Борусевич В.О., Русецкий А.А., Сазонов К.Е., Соловьев И.А. Современные гидродинамические лаборатории. СПб.: ФГУП «Крыловский государственный научный центр», 2019. 316 с. Haskins K.L., Courville Z.R., Sodhi D.S., Stanley J.M., Zabilansky L.J., Story J.M. Interaction between Brash Ice and Boat Propulsion Systems. Cold Regions Research and Engineering Laboratory US Army Engineer Research and Development Center, ERDC TR-14-1. 2014. 85 p. Karulina M.M., Karulin E.B. Analytical investigation of propeller operation in brash ice // Proceedings of the 26th International Conference on Port and Ocean Engineering under Arctic Conditions June 14–18, 2021, Moscow, Russia. URL: https://www.poac.com/Proceedings/2021/POAC21-032.pdf (дата обращения 05.12.2021). Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Arctic and Antarctic Research; Том 67, № 4 (2021); 406-424 Проблемы Арктики и Антарктики; Том 67, № 4 (2021); 406-424 2618-6713 0555-2648 10.30758/0555-2648-2021-67-4 тертый лед ice basin ice resistance method of discrete elements propeller ледовое сопротивление ледовый бассейн метод дискретных элементов info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2021 ftjaaresearch https://doi.org/10.30758/0555-2648-2021-67-4-406-42410.30758/0555-2648-2021-67-410.24937/2542-2324-2018-2-384-9-2810.1016/j.coldregions.2018.09.00410.1016/j.oceaneng.2020.10853910.24937/2542-2324-2019-3-389-11-2110.1007/s13344-018-0057-2 2024-05-31T03:22:51Z The paper gives a review of the studies concerned with operation of vessels in brash ice. Recently, the ice conditions have received an ever increasing attention of the researchers related to the fact that shipping in the Arctic regions and freezing seas, as well as in inland waterways has been scaled up. One of the important fields of brash ice studies is specifics of sailing under these conditions and primarily determination of the ship ice resistance. The paper shows that theoretical methods combined with physical modeling in ice basins are used for determination of the ship ice resistance under brash ice conditions. The paper traces the evolution of theoretical models utilized for calculations. It is mentioned that the models are mainly based on loose material mechanics. A rapidly developing computer modeling of ship motion in brash ice based on discrete element method is considered. Physical modeling techniques used for modeling brash ice in ice basin are described, and challenges of experimental investigations are discussed. It is pointed out that experimental studies in ice basin can provide valuable data not only about ship ice resistance but also about the mechanisms giving rise to ice channels filled with brash ice. The paper describes the methods for studying operation of ship propellers in brash ice conditions. It is concluded that further research into brash ice is needed. В статье приведен обзор исследований, посвященных изучению движения судов в тертых льдах. Показано, что для определения ледового сопротивления судна в указанных условиях используются теоретические методы исследования и метод физического моделирования в ледовых бассейнах. В работе прослежена эволюция теоретических моделей, применяемых для расчета. Описаны методы физического моделирования тертого льда в ледовом бассейне, обсуждены основные трудности, возникающие при экспериментальных исследованиях. Рассмотрено активно развивающееся в настоящее время компьютерное моделирование движения судна в тертых льдах на основе методов ... Article in Journal/Newspaper Arctic Arctic Arctic and Antarctic Research Arctic Arctic and Antarctic Research 67 4 406 424