Melting temperature of ice and total gas content of water at the ice-water interface above subglacial Lake Vostok

It is generally assumed that the gas composition and the total gas content of Lake Vostok’s water are, to a large extent, governed by the budget of atmospheric gases entering the lake together with glacier ice melt, mostly in its northern part. Since the ice accretion that prevails in the south of t...

Full description

Bibliographic Details
Published in:Arctic and Antarctic Research
Main Authors: V. Ya. Lipenkov, A. V. Turkeev, N. I. Vasilev, A. A. Ekaykin, E. V. Poliakova, В. Я. Липенков, А. В. Туркеев, Н. И. Васильев, А. А. Екайкин, Е. В. Полякова
Other Authors: The reported study was funded by RFBR, project number 20-05-00792, Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-05-00792
Format: Article in Journal/Newspaper
Language:Russian
Published: Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт 2021
Subjects:
Online Access:https://www.aaresearch.science/jour/article/view/402
https://doi.org/10.30758/0555-2648-2021-67-4-348-367
id ftjaaresearch:oai:oai.aari.elpub.ru:article/402
record_format openpolar
institution Open Polar
collection Arctic and Antarctic Research
op_collection_id ftjaaresearch
language Russian
topic термометрия
Antarctica
borehole temperature measurements
dissolved oxygen concentration
gas content of water
melting temperature of ice
subglacial lake
газосодержание воды
гидраты воздуха
концентрация кислорода
подледниковое озеро
температура плавления льда
spellingShingle термометрия
Antarctica
borehole temperature measurements
dissolved oxygen concentration
gas content of water
melting temperature of ice
subglacial lake
газосодержание воды
гидраты воздуха
концентрация кислорода
подледниковое озеро
температура плавления льда
V. Ya. Lipenkov
A. V. Turkeev
N. I. Vasilev
A. A. Ekaykin
E. V. Poliakova
В. Я. Липенков
А. В. Туркеев
Н. И. Васильев
А. А. Екайкин
Е. В. Полякова
Melting temperature of ice and total gas content of water at the ice-water interface above subglacial Lake Vostok
topic_facet термометрия
Antarctica
borehole temperature measurements
dissolved oxygen concentration
gas content of water
melting temperature of ice
subglacial lake
газосодержание воды
гидраты воздуха
концентрация кислорода
подледниковое озеро
температура плавления льда
description It is generally assumed that the gas composition and the total gas content of Lake Vostok’s water are, to a large extent, governed by the budget of atmospheric gases entering the lake together with glacier ice melt, mostly in its northern part. Since the ice accretion that prevails in the south of the lake leads to the exclusion of gases during the freezing process, these gases can build up in the lake water. Earlier theoretical works [2, 3] have demonstrated that about 30 water residence times are required to attain equilibrium between gases in solution and those in a hydrate phase, which sets the upper bounds of concentrations of nitrogen and oxygen dissolved in sub-ice water (~2.7 g N2 L–1 and ~0.8 g O2 L–1). Here we attempt to estimate the real gas content of the lake water based on the link between the pressure melting temperature of ice and the concentration of gases dissolved in the liquid phase [2]. We use the stacked borehole temperature profile extended to 3753 m depth and the measurements of temperature of sub-ice water that entered the borehole after the second unsealing of Lake Vostok to estimate the melting temperature of ice (–2.72 ± 0.1 °C) at the ice sheet-lake interface (depth 3758.6 ± 3 m, pressure 33.78 ± 0.05 MPa). The gas content of the near-surface layer of lake that corresponds to this melting temperature is calculated to be 2.23 g.L–1, meaning that the concentration of dissolved oxygen must be as high as 0.53 g.L–1, i. e. one-two orders of magnitude higher than in any other known water bodies on our planet. The inferred gas content of sub-ice water is, by a factor of 1.6, lower than the maximal solubility of air in water in equilibrium with air hydrate, though it is still higher, by a factor of 19, than the total air content of melting glacier ice. The relatively low concentration of dissolved air in the near-surface layer of the lake revealed in this study provides a new experimental constraint for understanding the gas distribution in Lake Vostok as affected by the circulation and ...
author2 The reported study was funded by RFBR, project number 20-05-00792
Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-05-00792
format Article in Journal/Newspaper
author V. Ya. Lipenkov
A. V. Turkeev
N. I. Vasilev
A. A. Ekaykin
E. V. Poliakova
В. Я. Липенков
А. В. Туркеев
Н. И. Васильев
А. А. Екайкин
Е. В. Полякова
author_facet V. Ya. Lipenkov
A. V. Turkeev
N. I. Vasilev
A. A. Ekaykin
E. V. Poliakova
В. Я. Липенков
А. В. Туркеев
Н. И. Васильев
А. А. Екайкин
Е. В. Полякова
author_sort V. Ya. Lipenkov
title Melting temperature of ice and total gas content of water at the ice-water interface above subglacial Lake Vostok
title_short Melting temperature of ice and total gas content of water at the ice-water interface above subglacial Lake Vostok
title_full Melting temperature of ice and total gas content of water at the ice-water interface above subglacial Lake Vostok
title_fullStr Melting temperature of ice and total gas content of water at the ice-water interface above subglacial Lake Vostok
title_full_unstemmed Melting temperature of ice and total gas content of water at the ice-water interface above subglacial Lake Vostok
title_sort melting temperature of ice and total gas content of water at the ice-water interface above subglacial lake vostok
publisher Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт
publishDate 2021
url https://www.aaresearch.science/jour/article/view/402
https://doi.org/10.30758/0555-2648-2021-67-4-348-367
long_lat ENVELOPE(106.000,106.000,-77.500,-77.500)
geographic Lake Vostok
geographic_facet Lake Vostok
genre Antarc*
Antarctica
Arctic
Ice Sheet
The Cryosphere
genre_facet Antarc*
Antarctica
Arctic
Ice Sheet
The Cryosphere
op_source Arctic and Antarctic Research; Том 67, № 4 (2021); 348-367
Проблемы Арктики и Антарктики; Том 67, № 4 (2021); 348-367
2618-6713
0555-2648
10.30758/0555-2648-2021-67-4
op_relation https://www.aaresearch.science/jour/article/view/402/212
Липенков В.Я., Лукин В.В., Булат С.А., Васильев Н.И., Екайкин А.А., Лейченков Г.Л., Масолов В.Н., Попов С.В., Саватюгин Л.М., Саламатин А.Н., Шибаев Ю.А. Итоги исследования подледникового озера Восток в период МПГ // Вклад России в Международный полярный год 2007/08. Полярная криосфера и воды суши. М.: Paulsen, 2011. С. 17–47.
Lipenkov V.Ya., Istomin V.А. On the stability of air clathrate-hydrate crystals in subglacial lake Vostok, Antarctica // Материалы гляциологических исследований. 2001. № 91. С. 138–149.
McKay C.P., Hand K.P., Doran P.T, Andersen D.T., Priscu J.C. Clathrate formation and the fate of noble and biologically useful gases in Lake Vostok, Antarctica // Geophysical Res. Letters. 2003. V. 30. № 13. P. 1702–1705.
Committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments. Exploration of Antarctic Subglacial Aquatic Environments: Environmental and Scientific Stewardship. National Research Council, 2007. 162 p. http://www.nap.edu/catalog/11886.html.
Siegert M.J., Ellis-Evans J.C., Tranter M., Mayer C., Petit J.R., Salamatin A.N., Priscu J.C. Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes // Nature. 2001. V. 414. № 6864. P. 603–609.
Bulat S.A., Alekhina I.A., Blot M., Petit J.R., de Angelis M., Wagenbach D., Lipenkov V.Y., Vasilyeva L.P., Wloch D.M., Raynaud D., Lukin V.V. DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: Implications for searching for life in extreme icy environments // International Journal of Astrobiology. 2004. V. 3. № 1. P. 1–12.
Clow G.D. USGS polar temperature logging system, description and measurement Uncertainties. US Geological Survey Techniques and Methods 2–E3. US Geological Survey, Reston, VA, 2008. 24 p.
Tsyganova E.A., Salamatin A.N. Non-stationary temperature field simulations along the ice flow line “Ridge B — Vostok Station”, East Antarctica // Материалы гляциологических исследований. 2004. № 97. С. 57–70.
Salamatin A.N., Tsyganova E.A., Popov S.V., Lipenkov V.Ya. Ice flow line modeling in ice core data interpretation: Vostok Station (East Antarctica) // Physics of ice core records. Sapporo: Hokkaido University Press, 2009. V. 2. P. 167–194.
Salamatin A.N., Lipenkov V.Ya., Blinov K.V. Vostok (Antarctica) climate record time-scale deduced from the analysis of the borehole-temperature profile // Ann. of Glaciol. 1994. V. 20. P. 207–214.
Барков Н.И., Вострецов Р.Н., Липенков В.Я., Саламатин А.Н. Колебания температуры воздуха и осадков в районе станции Восток на протяжении четырех климатических циклов за последние 420 тыс. лет // Арктика и Антарктика. М.: Наука, 2002. Вып. 1 (35). С. 82–89.
Манаков А.Ю., Ильдяков А.В., Липенков В.Я., Екайкин А.А., Ходжер Т.В. Образование клатратного гидрата фреона HCFC-141b в глубокой скважине на станции Восток (Антарктида) в процессе вскрытия подледникового озера Восток // Криосфера Земли. 2017. Т. 21. № 3. С. 32–40. http://dx.doi.org/10.21782/KZ1560-7496-2017-3(32-40).
Talalay P., Li Ya., Augustin L., Clow G.D., Hong J., Lefebvre E., Markov A., Motoyama H., Ritz C. Geothermal heat flux from measured temperature profiles in deep ice boreholes in Antarctica // The Cryosphere. 2020. V. 14. P. 4021–4037. https://doi.org/10.5194/tc-14-4021-2020.
Lipenkov V.Ya., Salamatin A.N., Duval P. Bubbly-ice densification in ice sheets: II. Application // J. Glaciol. 1997. V. 43. № 145. P. 397–407.
Архипкин В.С., Добролюбов С.А. Основы термодинамики морской воды. М.: МГУ, 1998. 153 с.
Souchez R., Petit J.R., Tison J.-L., Jouzel J., Verbeke V. Ice formation in subglacial Lake Vostok, Central Antarctica // Earth and Planetary Science Letters. 2000. V. 181. P. 529–538.
Липенков В.Я., Истомин В.А., Преображенская А.В. Опыт исследования газового режима подледникового озера Восток // Проблемы Арктики и Антарктики. 2003. № 74. С. 66–87.
Lipenkov V.Y., Ekaykin A.A., Polyakova E.V., Raynaud D. Characterization of subglacial Lake Vostok as seen from physical and isotope properties of accreted ice // Phil. Trans. R. Soc. 2016. V. A 374. P. 20140303. http://dx.doi.org/10.1098/rsta.2014.0303.
Ekaykin A.A., Lipenkov V.Ya., Kozachek A.V., Vladimirova D.O. Stable water isotopic composition of the Antarctic Subglacial Lake Vostok: implications for understanding the Lake’s hydrology // Isotopes in Environmental & Health Studies. 2016. V. 52. № 4–5. P. 468–476. http://dx.doi.org/10.1080/10256016.2015.1129327.
Lipenkov V.Y., Candaudap F., Ravoir J., Dulac E., Raynaud D. A new device for air content measurements in polar ice // J. Glaciol. 1995. V. 41. № 138. P. 423–429.
https://www.aaresearch.science/jour/article/view/402
doi:10.30758/0555-2648-2021-67-4-348-367
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_doi https://doi.org/10.30758/0555-2648-2021-67-4-348-36710.30758/0555-2648-2021-67-410.21782/KZ1560-7496-2017-3(32-4010.5194/tc-14-4021-202010.1098/rsta.2014.0303
container_title Arctic and Antarctic Research
container_volume 67
container_issue 4
container_start_page 348
op_container_end_page 367
_version_ 1802646452270268416
spelling ftjaaresearch:oai:oai.aari.elpub.ru:article/402 2024-06-23T07:46:31+00:00 Melting temperature of ice and total gas content of water at the ice-water interface above subglacial Lake Vostok Температура плавления льда и газосодержание воды на контакте ледника с подледниковым озером Восток V. Ya. Lipenkov A. V. Turkeev N. I. Vasilev A. A. Ekaykin E. V. Poliakova В. Я. Липенков А. В. Туркеев Н. И. Васильев А. А. Екайкин Е. В. Полякова The reported study was funded by RFBR, project number 20-05-00792 Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-05-00792 2021-12-09 application/pdf https://www.aaresearch.science/jour/article/view/402 https://doi.org/10.30758/0555-2648-2021-67-4-348-367 rus rus Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт https://www.aaresearch.science/jour/article/view/402/212 Липенков В.Я., Лукин В.В., Булат С.А., Васильев Н.И., Екайкин А.А., Лейченков Г.Л., Масолов В.Н., Попов С.В., Саватюгин Л.М., Саламатин А.Н., Шибаев Ю.А. Итоги исследования подледникового озера Восток в период МПГ // Вклад России в Международный полярный год 2007/08. Полярная криосфера и воды суши. М.: Paulsen, 2011. С. 17–47. Lipenkov V.Ya., Istomin V.А. On the stability of air clathrate-hydrate crystals in subglacial lake Vostok, Antarctica // Материалы гляциологических исследований. 2001. № 91. С. 138–149. McKay C.P., Hand K.P., Doran P.T, Andersen D.T., Priscu J.C. Clathrate formation and the fate of noble and biologically useful gases in Lake Vostok, Antarctica // Geophysical Res. Letters. 2003. V. 30. № 13. P. 1702–1705. Committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments. Exploration of Antarctic Subglacial Aquatic Environments: Environmental and Scientific Stewardship. National Research Council, 2007. 162 p. http://www.nap.edu/catalog/11886.html. Siegert M.J., Ellis-Evans J.C., Tranter M., Mayer C., Petit J.R., Salamatin A.N., Priscu J.C. Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes // Nature. 2001. V. 414. № 6864. P. 603–609. Bulat S.A., Alekhina I.A., Blot M., Petit J.R., de Angelis M., Wagenbach D., Lipenkov V.Y., Vasilyeva L.P., Wloch D.M., Raynaud D., Lukin V.V. DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: Implications for searching for life in extreme icy environments // International Journal of Astrobiology. 2004. V. 3. № 1. P. 1–12. Clow G.D. USGS polar temperature logging system, description and measurement Uncertainties. US Geological Survey Techniques and Methods 2–E3. US Geological Survey, Reston, VA, 2008. 24 p. Tsyganova E.A., Salamatin A.N. Non-stationary temperature field simulations along the ice flow line “Ridge B — Vostok Station”, East Antarctica // Материалы гляциологических исследований. 2004. № 97. С. 57–70. Salamatin A.N., Tsyganova E.A., Popov S.V., Lipenkov V.Ya. Ice flow line modeling in ice core data interpretation: Vostok Station (East Antarctica) // Physics of ice core records. Sapporo: Hokkaido University Press, 2009. V. 2. P. 167–194. Salamatin A.N., Lipenkov V.Ya., Blinov K.V. Vostok (Antarctica) climate record time-scale deduced from the analysis of the borehole-temperature profile // Ann. of Glaciol. 1994. V. 20. P. 207–214. Барков Н.И., Вострецов Р.Н., Липенков В.Я., Саламатин А.Н. Колебания температуры воздуха и осадков в районе станции Восток на протяжении четырех климатических циклов за последние 420 тыс. лет // Арктика и Антарктика. М.: Наука, 2002. Вып. 1 (35). С. 82–89. Манаков А.Ю., Ильдяков А.В., Липенков В.Я., Екайкин А.А., Ходжер Т.В. Образование клатратного гидрата фреона HCFC-141b в глубокой скважине на станции Восток (Антарктида) в процессе вскрытия подледникового озера Восток // Криосфера Земли. 2017. Т. 21. № 3. С. 32–40. http://dx.doi.org/10.21782/KZ1560-7496-2017-3(32-40). Talalay P., Li Ya., Augustin L., Clow G.D., Hong J., Lefebvre E., Markov A., Motoyama H., Ritz C. Geothermal heat flux from measured temperature profiles in deep ice boreholes in Antarctica // The Cryosphere. 2020. V. 14. P. 4021–4037. https://doi.org/10.5194/tc-14-4021-2020. Lipenkov V.Ya., Salamatin A.N., Duval P. Bubbly-ice densification in ice sheets: II. Application // J. Glaciol. 1997. V. 43. № 145. P. 397–407. Архипкин В.С., Добролюбов С.А. Основы термодинамики морской воды. М.: МГУ, 1998. 153 с. Souchez R., Petit J.R., Tison J.-L., Jouzel J., Verbeke V. Ice formation in subglacial Lake Vostok, Central Antarctica // Earth and Planetary Science Letters. 2000. V. 181. P. 529–538. Липенков В.Я., Истомин В.А., Преображенская А.В. Опыт исследования газового режима подледникового озера Восток // Проблемы Арктики и Антарктики. 2003. № 74. С. 66–87. Lipenkov V.Y., Ekaykin A.A., Polyakova E.V., Raynaud D. Characterization of subglacial Lake Vostok as seen from physical and isotope properties of accreted ice // Phil. Trans. R. Soc. 2016. V. A 374. P. 20140303. http://dx.doi.org/10.1098/rsta.2014.0303. Ekaykin A.A., Lipenkov V.Ya., Kozachek A.V., Vladimirova D.O. Stable water isotopic composition of the Antarctic Subglacial Lake Vostok: implications for understanding the Lake’s hydrology // Isotopes in Environmental & Health Studies. 2016. V. 52. № 4–5. P. 468–476. http://dx.doi.org/10.1080/10256016.2015.1129327. Lipenkov V.Y., Candaudap F., Ravoir J., Dulac E., Raynaud D. A new device for air content measurements in polar ice // J. Glaciol. 1995. V. 41. № 138. P. 423–429. https://www.aaresearch.science/jour/article/view/402 doi:10.30758/0555-2648-2021-67-4-348-367 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Arctic and Antarctic Research; Том 67, № 4 (2021); 348-367 Проблемы Арктики и Антарктики; Том 67, № 4 (2021); 348-367 2618-6713 0555-2648 10.30758/0555-2648-2021-67-4 термометрия Antarctica borehole temperature measurements dissolved oxygen concentration gas content of water melting temperature of ice subglacial lake газосодержание воды гидраты воздуха концентрация кислорода подледниковое озеро температура плавления льда info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2021 ftjaaresearch https://doi.org/10.30758/0555-2648-2021-67-4-348-36710.30758/0555-2648-2021-67-410.21782/KZ1560-7496-2017-3(32-4010.5194/tc-14-4021-202010.1098/rsta.2014.0303 2024-05-31T03:22:51Z It is generally assumed that the gas composition and the total gas content of Lake Vostok’s water are, to a large extent, governed by the budget of atmospheric gases entering the lake together with glacier ice melt, mostly in its northern part. Since the ice accretion that prevails in the south of the lake leads to the exclusion of gases during the freezing process, these gases can build up in the lake water. Earlier theoretical works [2, 3] have demonstrated that about 30 water residence times are required to attain equilibrium between gases in solution and those in a hydrate phase, which sets the upper bounds of concentrations of nitrogen and oxygen dissolved in sub-ice water (~2.7 g N2 L–1 and ~0.8 g O2 L–1). Here we attempt to estimate the real gas content of the lake water based on the link between the pressure melting temperature of ice and the concentration of gases dissolved in the liquid phase [2]. We use the stacked borehole temperature profile extended to 3753 m depth and the measurements of temperature of sub-ice water that entered the borehole after the second unsealing of Lake Vostok to estimate the melting temperature of ice (–2.72 ± 0.1 °C) at the ice sheet-lake interface (depth 3758.6 ± 3 m, pressure 33.78 ± 0.05 MPa). The gas content of the near-surface layer of lake that corresponds to this melting temperature is calculated to be 2.23 g.L–1, meaning that the concentration of dissolved oxygen must be as high as 0.53 g.L–1, i. e. one-two orders of magnitude higher than in any other known water bodies on our planet. The inferred gas content of sub-ice water is, by a factor of 1.6, lower than the maximal solubility of air in water in equilibrium with air hydrate, though it is still higher, by a factor of 19, than the total air content of melting glacier ice. The relatively low concentration of dissolved air in the near-surface layer of the lake revealed in this study provides a new experimental constraint for understanding the gas distribution in Lake Vostok as affected by the circulation and ... Article in Journal/Newspaper Antarc* Antarctica Arctic Ice Sheet The Cryosphere Arctic and Antarctic Research Lake Vostok ENVELOPE(106.000,106.000,-77.500,-77.500) Arctic and Antarctic Research 67 4 348 367