Influence of cosmic weather on the Earth’s atmosphere

The review generalizes experimental data on the relationships between the solar activity agents (space weather) and atmosphere constituents. It is shown that high-energy solar protons (SPE) make a powerful impact on photo-chemical processes in the polar areas and, correspondingly, on atmospheric cir...

Full description

Bibliographic Details
Published in:Arctic and Antarctic Research
Main Authors: O. A. Troshichev, I. P. Gabis, A. A. Krivolutsky, О. А. Трошичев, И. П. Габис, А. А. Криволуцкий
Format: Article in Journal/Newspaper
Language:English
Published: Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт 2021
Subjects:
Online Access:https://www.aaresearch.science/jour/article/view/354
https://doi.org/10.30758/0555-2648-2021-67-2-177-207
id ftjaaresearch:oai:oai.aari.elpub.ru:article/354
record_format openpolar
institution Open Polar
collection Arctic and Antarctic Research
op_collection_id ftjaaresearch
language English
topic южная осцилляция (ENSO)
Earth’s atmosphere
geoeffective solar wind
high-energy solar protons (SPE)
model computations
ozone depletion
planetary cloudiness
quasi-biennial oscillation (QBO)
solar UV irradiance
Southern Oscillation (ENSO)
Space weather
атмосферная циркуляция
высокоэнергичные солнечные протоны
геоэффективный солнечный ветер
квазидвухлетняя осцилляция (QBO)
космическая погода
модельные расчеты
озоновая «дыра»
планетарная облачность
солнечное УФ-излучение
spellingShingle южная осцилляция (ENSO)
Earth’s atmosphere
geoeffective solar wind
high-energy solar protons (SPE)
model computations
ozone depletion
planetary cloudiness
quasi-biennial oscillation (QBO)
solar UV irradiance
Southern Oscillation (ENSO)
Space weather
атмосферная циркуляция
высокоэнергичные солнечные протоны
геоэффективный солнечный ветер
квазидвухлетняя осцилляция (QBO)
космическая погода
модельные расчеты
озоновая «дыра»
планетарная облачность
солнечное УФ-излучение
O. A. Troshichev
I. P. Gabis
A. A. Krivolutsky
О. А. Трошичев
И. П. Габис
А. А. Криволуцкий
Influence of cosmic weather on the Earth’s atmosphere
topic_facet южная осцилляция (ENSO)
Earth’s atmosphere
geoeffective solar wind
high-energy solar protons (SPE)
model computations
ozone depletion
planetary cloudiness
quasi-biennial oscillation (QBO)
solar UV irradiance
Southern Oscillation (ENSO)
Space weather
атмосферная циркуляция
высокоэнергичные солнечные протоны
геоэффективный солнечный ветер
квазидвухлетняя осцилляция (QBO)
космическая погода
модельные расчеты
озоновая «дыра»
планетарная облачность
солнечное УФ-излучение
description The review generalizes experimental data on the relationships between the solar activity agents (space weather) and atmosphere constituents. It is shown that high-energy solar protons (SPE) make a powerful impact on photo-chemical processes in the polar areas and, correspondingly, on atmospheric circulation and planetary cloudiness. Variations of the solar UV irradiance modulate the descent rate of the zonal wind in the equatorial stratosphere in the course of quasi-biennial oscillation (QBO), and thus control the total duration (period) of the QBO cycle and, correspondingly, the seasonal ozone depletion in the Antarctic. The geo-effective solar wind impacts on the atmospheric wind system in the entire Southern Polar region, and influences the dynamics of the Southern Oscillation (ENSO). В обзоре обобщены экспериментальные данные о влиянии космической погоды на земную атмосферу. Показано, что высокоэнергичные солнечные протоны (SPE) оказывают мощное воздействие на фотохимические процессы в полярных областях и, соответственно, на атмосферную циркуляцию и планетарную облачность. Вариации солнечного УФ-излучения моделируют скорость спуска зональных ветров в экваториальной стратосфере в ходе квазидвухлетней осцилляции (QBO) и контролируют, таким образом, общую продолжительность (период) QBO цикла и, соответственно, вариации общего содержания озона в Антарктике. Геоэффективный солнечный ветер воздействует на систему катабатических ветров во всей южной полярной области и влияет на динамику южной осцилляции (ENSO).
format Article in Journal/Newspaper
author O. A. Troshichev
I. P. Gabis
A. A. Krivolutsky
О. А. Трошичев
И. П. Габис
А. А. Криволуцкий
author_facet O. A. Troshichev
I. P. Gabis
A. A. Krivolutsky
О. А. Трошичев
И. П. Габис
А. А. Криволуцкий
author_sort O. A. Troshichev
title Influence of cosmic weather on the Earth’s atmosphere
title_short Influence of cosmic weather on the Earth’s atmosphere
title_full Influence of cosmic weather on the Earth’s atmosphere
title_fullStr Influence of cosmic weather on the Earth’s atmosphere
title_full_unstemmed Influence of cosmic weather on the Earth’s atmosphere
title_sort influence of cosmic weather on the earth’s atmosphere
publisher Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт
publishDate 2021
url https://www.aaresearch.science/jour/article/view/354
https://doi.org/10.30758/0555-2648-2021-67-2-177-207
geographic Antarctic
The Antarctic
geographic_facet Antarctic
The Antarctic
genre Antarc*
Antarctic
Arctic
genre_facet Antarc*
Antarctic
Arctic
op_source Arctic and Antarctic Research; Том 67, № 2 (2021); 177-207
Проблемы Арктики и Антарктики; Том 67, № 2 (2021); 177-207
2618-6713
0555-2648
10.30758/0555-2648-2021-67-2
op_relation https://www.aaresearch.science/jour/article/view/354/202
Thompson D.W.J., Wallace J.M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Let. 1998, 25 (9): 1297–1300.
Philander S.G.H., Rasmusson E.M. The Southern Oscillation and El Niño. Advances in Geophysics. 1985, 28A: 197–215.
Bazilevskaya G., Usoskin I., Flückiger E., Harrison R., Desorgher L., Bütikofer R., Krainev M., Makhmutov V., Stozhkov Y., Svirzhevskaya A., Svirzhevsky N., Kovaltsov G. Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. 2008, 137: 149–173. doi:10.1007/s11214- 008-9339-y.
Mironova I., Aplin K., Arnold F., Bazilevskaya G., Harrison R., Krivolutsy A., Nicoll K., Rozanov E., Turunen E., Usoskin I. Energetic particle influence on the Earth’s atmosphere. Space Sci. Rev. 2015, 194: 1–96. doi:10.1007/s11214-015-0185-4.
Miroshnichenko L.I. Solar cosmic rays: 75 years of research. Physics-Uspekhi. 2018, 61(4): 323–352. doi: https://doi.org/10.3367/UFNe.2017.03.038091.
Mironova I., Bazilevskaya G., Kovaltsov G., Artamonov A., Rozanov E., Mishev A., Makhmutov V., Karagodin A., Golubenko K. Spectra of high energy electron precipitation and atmospheric ionization rates retrieval from balloon measurements. Science of the Total Environment. 2019, 693: 133242. https:doi.org/10.1016/j.scitotenv.2019.07.048.
Usoskin, I.G., Kovaltsov G.A., Mironova I.A. Cosmic ray induced ionization model CRAC:CRII: An extension to the upper atmosphere. J. Geophys. Res. 2010, 115: D10302. doi:10.1029/2009JD013142.
Usoskin, I.G., Kovaltsov G.A., Mironova I.A., Tylka A.J., Dietrich W.F. Ionization effect of solar particle GLE events in low and middle atmosphere. Atmospheric Chemistry and Physics. 2011, 11 (5): 1979–1988. doi:10.5194/acp-11-1979-2011.
Tinsley B.A., Brown G.M., Scherrer P.H. Solar variability influences on weather and climate: possible connection through cosmic ray fluxes and storm intensification. J. Geophys. Res. 1989, 94: 14783–14792.
Pudovkin M.I., Veretenenko S.V. Cloudiness decreases associated with Forbush-decreases of the galactic cosmic rays. J. Atmos. Terr. Phys. 1995, 57: 1349–1355.
Svensmark H., Friis-Christensen E. Variation of cosmic ray flux and global cloud coverage — a missing link in solar climate relations. J. Solar-Terr. Phys. 1997, 59: 1225–1232.
Todd M., Kniveton D. Changes in cloud cover associated with Forbush decreases of galactic cosmic rays. J. Geophys. Res. 2001, 106: 32031–32041.
Marsh N., Svensmark H. Galactic cosmic ray and El Nino-Southern Oscillation trends in International Satellite Cloud Climatology Project D2 low-cloud properties. J. Geophys. Res. 2003, 108: 4195. doi:10.1029/2001JD 001264.
Kernthaler S., Toumi R., Haigh J. Some doubts concerning a link between cosmic ray fluxes and global cloudiness. Geophys. Res. Let. 1999, 26 (7): 863–865. https://doi.org/10.1029/1999GL900121.
Farrar P.D. Are cosmic rays influencing ocean cloud coverage — or is it only El Nino? Climate Change. 2000, 47: 7–15.
Palle E., Butler C.J. The proposed connection between clouds and cosmic rays: cloud behavior during the past 50–120 years. J. Atmos. Solar-Terr. Phys. 2002, 64: 327–337.
Kristjansson J.E., Staple A., Kristiansen J., Kaas E. A new look at possible connection between solar activity, clouds and climate. Geophys. Res. Let. 2002, 29: 2107 doi:10.1029/2002GL015646.
Harrison R.G., Carslaw K.S. Ion-aerosol-cloud processes in the lower atmosphere. Rev. Geophys. 2003, 41: 1012–1026. doi:10.1029/2002RG000114.
Rycroft M.J., Nicoll K.A., Aplin K.L., Harrison R.G. Recent advances in global electric circuit coupling between the space environment and the troposphere. J. Atmos. Sol.-Terr. Phys. 2012, 90–91 (1):198–211, doi:10.1016/j.jastp.2012.03.015.
Tinsley B.A., Rohrbaugh R.P., Hei M., Beard K.V. Effects of image charges on the scavenging of aerosol particles by cloud droplets and on droplet charging and possible ice nucleation processes. J. Atmos. Sci. 2000, 57: 2118–2134.
Harrison R.G. Cloud formation and the possible significance of charge for atmospheric condensation and ice nuclei. Space Sci. Rev. 2000, 94: 381–396.
Marsh N., Svensmark H. Cosmic rays, clouds, and climate. Space Sci. Rev. 2000, 94: 215–230.
Carslaw K.S., Harrison R.G., Kirkby J. Cosmic rays, clouds, and climate. Science. 2002, 298: 1732–1737. doi:10.1126/science.1076964.
Tinsley B.A. Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere. Space Sci. Rev. 2000, 94: 231–258.
Mironova I., Tinsley B., Zhou L. The links between atmospheric vorticity, radiation belt electrons, and the solar wind. Advances in Space Research. 2012, 50 (6): 783–790. doi:10.1016/j. asr.2011.03.043.
Kazil J., Lovejoy E.R., Barth M.C., O’Brien K. Aerosol nucleation over oceans and the role of galactic cosmic rays. Atmos. Chem. Phys. 2006, 6: 4905–4924.
Kazil J., Harrison R.G., Lovejoy E.R. Tropospheric new particle formation and the role of ions. Space Sci. Rev. 2008, 137: 241–255. doi:10.1007/s11214-008-9388-2.
Kirkby J., Curtius J. et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature. 2011, 476 (7361): 429–433. doi:10.1038/nature10343.
Mironova I.A., Desorgher L., Usoskin I.G., Fluckige E.O., Butikofer R. Variations of aerosol optical properties during the extreme solar event in January 2005. Geophys. Res. Lett. 2008, 35: L18610. doi:10.1029/2008GL035120.
Mironova I.A., Usoskin I.G. Рossible effect of extreme solar energetic particle events of September– October 1989 on polar stratospheric aerosols: a case study. Atmos. Chem. Phys. 2013, 13: 8543–8550. doi:10.5194/acp-13-8543-2013.
Mironova I.A., Usoskin I.G. Possible effect of strong solar energetic particle events on polar stratospheric aerosol: a summary of observational results. Environ. Res. Lett. 2014, 9: 015002. doi:10.1088/1748-9326/9/1/01502.
Rozanov E., Calisto M., Egorova T., Peter T., Schmutz W. Influence of the precipitating energetic particles on atmospheric chemistry and climate. Surv. Geophys. 2012, 33: 483–501.
Veretenenko, S., Thejll P. Effects of energetic solar proton events on the cyclone development in the North Atlantic. J. Atmos. Solar-Terr. Phys. 2004, 66: 393–405.
Veretenenko S.V. Comparative analysis of short-term effects of solar and galactic cosmic rays on the evolution of baric systems at middle latitudes. Bulletin of the Russian Academy of Sciences: Physics. 2017, 81 (2): 260–263.
Artamonova I., Veretenenko S. Galactic cosmic ray variation influence on baric system dynamics at middle latitudes. J. Atmos. Solar-Terr. Phys. 2011, 73 (2.3): 366–370.
Veretenenko S., Ogurtsov M. Stratospheric polar vortex as a possible reason for temporal variations of solar activity and galactic cosmic ray effects on the lower atmosphere circulation. Adv. Space Res. 2014, 54: 2467–2477.
Veretenenko S., Ogurtsov M. Cloud cover anomalies at middle latitudes: Links to troposphere dynamics and solar variability. J Atmos Solar-Terr Phys. 2016, 149: 207–218.
Veretenenko S.V., Ogurtsov M.G. Influence of solar-geophysical factors on the state of the stratospheric polar vortex. Geomagn. Aeronomy. 2020, 60: 974–981.
Funke B., Baumgaertner A., Calisto M., Egorova T., Jackman C.H., Kieser J., Krivolutsky A., Lopez Puertas M., Marsh D., Reddmann T., Rozanov E., Salmi S., Sinnhuber M., Stiller G., Verronen P., Versick S., Clarmann T., Vyushkova T., Wieters N., Wissing J. Composition changes after the “Halloween” solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study. Atmos. Chem. Phys. 2011, 11: 9089–9139. www. atmos-chem-phys.net/11/9089/2011/doi:10.5194/acp-11-9089-2011.
Krivolutsky A.A., Vyushkova T.Yu., Cherepanova L.A., Kukoleva A.A., Repnev A I., Banin M.V. Three-dimensional global photochemical model CHARM. Accounting for the contribution of solar activity. Geomagn. Aeronomy. 2015, 55 (1): 64–93.
Krivolutsky A.A., Repnev A.I. The impact of space factors on the Earth’s ozonosphere. Moscow: GEOS, 2009: 384 p.
Repnev A.I., Krivolutsky A.A. Variations in the chemical composition of the atmosphere from satellite measurements and their relation to fluxes of energetic particles of cosmic origin. Izvestiya RAS. Atmospheric and Oceans Physics. 2010, 46 (5): 535–562.
Krivolutsky A.A., Cherepanova L.A., Vyushkova T.Yu., Repnev A.I., Klyuchnikova A.V. Global circulation of the Earth’s atmosphere at altitudes of 0–135 km, calculated using the ARM model. Accounting for the contribution of solar activity. Geomagn. Aeronomy. 2015, 55 (6): 808–828.
Krivolutsky A.A., Kuminov A.A., Kukoleva A.V., Repnev A.I., Pereyaslova N.K. Proton activity of the Sun in the 23rd cycle of activity and changes in the ozonosphere: numerical modeling and analysis of observational data. Geomagn. Aeronomy. 2008, 48 (4): 450–464.
Krivolutsky A.A., Klyuchnikova A.V., Zakharov G.R., Vyushkova T.Yu., Kuminov A.A. Dynamical response of the middle atmosphere to solar proton event of July 2000: three-dimensional model simulations. Adv. Space Res. 2006, 37: 1602–1613.
Ondrášková A., Krivolutsky A., Kukoleva A., Vyushkova T., Kuminov A., Zakharov G. Response of the lower ionosphere to solar proton event on July 14 2000. Model simulations over the both poles. J. Atmos. Solar-Terr. Phys. 2008, 70: 539–545.
Baldwin M.P., Gray L.J., Dunkerton T.J., Hamilton K., Haynes P.H., Randel W.J., Holton J.R., Alexander M.J., Hirota I., Horinouchi T., Jones D.B.A., Kinnersley J.S., Marquardt C., Sato K., Takahashi M. The Quasi-biennial Oscillation. Reviews of Geophysics. 2001, 39 (2): 179–229.
Salby M., Callaghan P. Connection between the Solar Cycle and the QBO: The missing link. J. Climate. 2000, 13 (14): 2652–2663. doi:10.1175/1520-0442(1999)0122.0.CO;2.
Fischer P., Tung K.K. A reexamination of the QBO period modulation by the solar cycle. J. Geophys. Res. 2008, 113: D07114. doi:10.1029/2007JD008983.
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_doi https://doi.org/10.30758/0555-2648-2021-67-2-177-20710.30758/0555-2648-2021-67-210.1007/s1121410.1007/s11214-015-0185-410.3367/UFNe.2017.03.03809110.1016/j.scitotenv.2019.07.04810.1029/2009JD01314210.5194/acp-11-1979-201110.1029/2001JD10.1029/1999GL900121
container_title Arctic and Antarctic Research
container_volume 67
container_issue 2
container_start_page 177
op_container_end_page 207
_version_ 1802646458835402752
spelling ftjaaresearch:oai:oai.aari.elpub.ru:article/354 2024-06-23T07:46:31+00:00 Influence of cosmic weather on the Earth’s atmosphere Влияние космической погоды на земную атмосферу O. A. Troshichev I. P. Gabis A. A. Krivolutsky О. А. Трошичев И. П. Габис А. А. Криволуцкий 2021-07-09 application/pdf https://www.aaresearch.science/jour/article/view/354 https://doi.org/10.30758/0555-2648-2021-67-2-177-207 eng eng Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт https://www.aaresearch.science/jour/article/view/354/202 Thompson D.W.J., Wallace J.M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Let. 1998, 25 (9): 1297–1300. Philander S.G.H., Rasmusson E.M. The Southern Oscillation and El Niño. Advances in Geophysics. 1985, 28A: 197–215. Bazilevskaya G., Usoskin I., Flückiger E., Harrison R., Desorgher L., Bütikofer R., Krainev M., Makhmutov V., Stozhkov Y., Svirzhevskaya A., Svirzhevsky N., Kovaltsov G. Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. 2008, 137: 149–173. doi:10.1007/s11214- 008-9339-y. Mironova I., Aplin K., Arnold F., Bazilevskaya G., Harrison R., Krivolutsy A., Nicoll K., Rozanov E., Turunen E., Usoskin I. Energetic particle influence on the Earth’s atmosphere. Space Sci. Rev. 2015, 194: 1–96. doi:10.1007/s11214-015-0185-4. Miroshnichenko L.I. Solar cosmic rays: 75 years of research. Physics-Uspekhi. 2018, 61(4): 323–352. doi: https://doi.org/10.3367/UFNe.2017.03.038091. Mironova I., Bazilevskaya G., Kovaltsov G., Artamonov A., Rozanov E., Mishev A., Makhmutov V., Karagodin A., Golubenko K. Spectra of high energy electron precipitation and atmospheric ionization rates retrieval from balloon measurements. Science of the Total Environment. 2019, 693: 133242. https:doi.org/10.1016/j.scitotenv.2019.07.048. Usoskin, I.G., Kovaltsov G.A., Mironova I.A. Cosmic ray induced ionization model CRAC:CRII: An extension to the upper atmosphere. J. Geophys. Res. 2010, 115: D10302. doi:10.1029/2009JD013142. Usoskin, I.G., Kovaltsov G.A., Mironova I.A., Tylka A.J., Dietrich W.F. Ionization effect of solar particle GLE events in low and middle atmosphere. Atmospheric Chemistry and Physics. 2011, 11 (5): 1979–1988. doi:10.5194/acp-11-1979-2011. Tinsley B.A., Brown G.M., Scherrer P.H. Solar variability influences on weather and climate: possible connection through cosmic ray fluxes and storm intensification. J. Geophys. Res. 1989, 94: 14783–14792. Pudovkin M.I., Veretenenko S.V. Cloudiness decreases associated with Forbush-decreases of the galactic cosmic rays. J. Atmos. Terr. Phys. 1995, 57: 1349–1355. Svensmark H., Friis-Christensen E. Variation of cosmic ray flux and global cloud coverage — a missing link in solar climate relations. J. Solar-Terr. Phys. 1997, 59: 1225–1232. Todd M., Kniveton D. Changes in cloud cover associated with Forbush decreases of galactic cosmic rays. J. Geophys. Res. 2001, 106: 32031–32041. Marsh N., Svensmark H. Galactic cosmic ray and El Nino-Southern Oscillation trends in International Satellite Cloud Climatology Project D2 low-cloud properties. J. Geophys. Res. 2003, 108: 4195. doi:10.1029/2001JD 001264. Kernthaler S., Toumi R., Haigh J. Some doubts concerning a link between cosmic ray fluxes and global cloudiness. Geophys. Res. Let. 1999, 26 (7): 863–865. https://doi.org/10.1029/1999GL900121. Farrar P.D. Are cosmic rays influencing ocean cloud coverage — or is it only El Nino? Climate Change. 2000, 47: 7–15. Palle E., Butler C.J. The proposed connection between clouds and cosmic rays: cloud behavior during the past 50–120 years. J. Atmos. Solar-Terr. Phys. 2002, 64: 327–337. Kristjansson J.E., Staple A., Kristiansen J., Kaas E. A new look at possible connection between solar activity, clouds and climate. Geophys. Res. Let. 2002, 29: 2107 doi:10.1029/2002GL015646. Harrison R.G., Carslaw K.S. Ion-aerosol-cloud processes in the lower atmosphere. Rev. Geophys. 2003, 41: 1012–1026. doi:10.1029/2002RG000114. Rycroft M.J., Nicoll K.A., Aplin K.L., Harrison R.G. Recent advances in global electric circuit coupling between the space environment and the troposphere. J. Atmos. Sol.-Terr. Phys. 2012, 90–91 (1):198–211, doi:10.1016/j.jastp.2012.03.015. Tinsley B.A., Rohrbaugh R.P., Hei M., Beard K.V. Effects of image charges on the scavenging of aerosol particles by cloud droplets and on droplet charging and possible ice nucleation processes. J. Atmos. Sci. 2000, 57: 2118–2134. Harrison R.G. Cloud formation and the possible significance of charge for atmospheric condensation and ice nuclei. Space Sci. Rev. 2000, 94: 381–396. Marsh N., Svensmark H. Cosmic rays, clouds, and climate. Space Sci. Rev. 2000, 94: 215–230. Carslaw K.S., Harrison R.G., Kirkby J. Cosmic rays, clouds, and climate. Science. 2002, 298: 1732–1737. doi:10.1126/science.1076964. Tinsley B.A. Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere. Space Sci. Rev. 2000, 94: 231–258. Mironova I., Tinsley B., Zhou L. The links between atmospheric vorticity, radiation belt electrons, and the solar wind. Advances in Space Research. 2012, 50 (6): 783–790. doi:10.1016/j. asr.2011.03.043. Kazil J., Lovejoy E.R., Barth M.C., O’Brien K. Aerosol nucleation over oceans and the role of galactic cosmic rays. Atmos. Chem. Phys. 2006, 6: 4905–4924. Kazil J., Harrison R.G., Lovejoy E.R. Tropospheric new particle formation and the role of ions. Space Sci. Rev. 2008, 137: 241–255. doi:10.1007/s11214-008-9388-2. Kirkby J., Curtius J. et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature. 2011, 476 (7361): 429–433. doi:10.1038/nature10343. Mironova I.A., Desorgher L., Usoskin I.G., Fluckige E.O., Butikofer R. Variations of aerosol optical properties during the extreme solar event in January 2005. Geophys. Res. Lett. 2008, 35: L18610. doi:10.1029/2008GL035120. Mironova I.A., Usoskin I.G. Рossible effect of extreme solar energetic particle events of September– October 1989 on polar stratospheric aerosols: a case study. Atmos. Chem. Phys. 2013, 13: 8543–8550. doi:10.5194/acp-13-8543-2013. Mironova I.A., Usoskin I.G. Possible effect of strong solar energetic particle events on polar stratospheric aerosol: a summary of observational results. Environ. Res. Lett. 2014, 9: 015002. doi:10.1088/1748-9326/9/1/01502. Rozanov E., Calisto M., Egorova T., Peter T., Schmutz W. Influence of the precipitating energetic particles on atmospheric chemistry and climate. Surv. Geophys. 2012, 33: 483–501. Veretenenko, S., Thejll P. Effects of energetic solar proton events on the cyclone development in the North Atlantic. J. Atmos. Solar-Terr. Phys. 2004, 66: 393–405. Veretenenko S.V. Comparative analysis of short-term effects of solar and galactic cosmic rays on the evolution of baric systems at middle latitudes. Bulletin of the Russian Academy of Sciences: Physics. 2017, 81 (2): 260–263. Artamonova I., Veretenenko S. Galactic cosmic ray variation influence on baric system dynamics at middle latitudes. J. Atmos. Solar-Terr. Phys. 2011, 73 (2.3): 366–370. Veretenenko S., Ogurtsov M. Stratospheric polar vortex as a possible reason for temporal variations of solar activity and galactic cosmic ray effects on the lower atmosphere circulation. Adv. Space Res. 2014, 54: 2467–2477. Veretenenko S., Ogurtsov M. Cloud cover anomalies at middle latitudes: Links to troposphere dynamics and solar variability. J Atmos Solar-Terr Phys. 2016, 149: 207–218. Veretenenko S.V., Ogurtsov M.G. Influence of solar-geophysical factors on the state of the stratospheric polar vortex. Geomagn. Aeronomy. 2020, 60: 974–981. Funke B., Baumgaertner A., Calisto M., Egorova T., Jackman C.H., Kieser J., Krivolutsky A., Lopez Puertas M., Marsh D., Reddmann T., Rozanov E., Salmi S., Sinnhuber M., Stiller G., Verronen P., Versick S., Clarmann T., Vyushkova T., Wieters N., Wissing J. Composition changes after the “Halloween” solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study. Atmos. Chem. Phys. 2011, 11: 9089–9139. www. atmos-chem-phys.net/11/9089/2011/doi:10.5194/acp-11-9089-2011. Krivolutsky A.A., Vyushkova T.Yu., Cherepanova L.A., Kukoleva A.A., Repnev A I., Banin M.V. Three-dimensional global photochemical model CHARM. Accounting for the contribution of solar activity. Geomagn. Aeronomy. 2015, 55 (1): 64–93. Krivolutsky A.A., Repnev A.I. The impact of space factors on the Earth’s ozonosphere. Moscow: GEOS, 2009: 384 p. Repnev A.I., Krivolutsky A.A. Variations in the chemical composition of the atmosphere from satellite measurements and their relation to fluxes of energetic particles of cosmic origin. Izvestiya RAS. Atmospheric and Oceans Physics. 2010, 46 (5): 535–562. Krivolutsky A.A., Cherepanova L.A., Vyushkova T.Yu., Repnev A.I., Klyuchnikova A.V. Global circulation of the Earth’s atmosphere at altitudes of 0–135 km, calculated using the ARM model. Accounting for the contribution of solar activity. Geomagn. Aeronomy. 2015, 55 (6): 808–828. Krivolutsky A.A., Kuminov A.A., Kukoleva A.V., Repnev A.I., Pereyaslova N.K. Proton activity of the Sun in the 23rd cycle of activity and changes in the ozonosphere: numerical modeling and analysis of observational data. Geomagn. Aeronomy. 2008, 48 (4): 450–464. Krivolutsky A.A., Klyuchnikova A.V., Zakharov G.R., Vyushkova T.Yu., Kuminov A.A. Dynamical response of the middle atmosphere to solar proton event of July 2000: three-dimensional model simulations. Adv. Space Res. 2006, 37: 1602–1613. Ondrášková A., Krivolutsky A., Kukoleva A., Vyushkova T., Kuminov A., Zakharov G. Response of the lower ionosphere to solar proton event on July 14 2000. Model simulations over the both poles. J. Atmos. Solar-Terr. Phys. 2008, 70: 539–545. Baldwin M.P., Gray L.J., Dunkerton T.J., Hamilton K., Haynes P.H., Randel W.J., Holton J.R., Alexander M.J., Hirota I., Horinouchi T., Jones D.B.A., Kinnersley J.S., Marquardt C., Sato K., Takahashi M. The Quasi-biennial Oscillation. Reviews of Geophysics. 2001, 39 (2): 179–229. Salby M., Callaghan P. Connection between the Solar Cycle and the QBO: The missing link. J. Climate. 2000, 13 (14): 2652–2663. doi:10.1175/1520-0442(1999)0122.0.CO;2. Fischer P., Tung K.K. A reexamination of the QBO period modulation by the solar cycle. J. Geophys. Res. 2008, 113: D07114. doi:10.1029/2007JD008983. Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Arctic and Antarctic Research; Том 67, № 2 (2021); 177-207 Проблемы Арктики и Антарктики; Том 67, № 2 (2021); 177-207 2618-6713 0555-2648 10.30758/0555-2648-2021-67-2 южная осцилляция (ENSO) Earth’s atmosphere geoeffective solar wind high-energy solar protons (SPE) model computations ozone depletion planetary cloudiness quasi-biennial oscillation (QBO) solar UV irradiance Southern Oscillation (ENSO) Space weather атмосферная циркуляция высокоэнергичные солнечные протоны геоэффективный солнечный ветер квазидвухлетняя осцилляция (QBO) космическая погода модельные расчеты озоновая «дыра» планетарная облачность солнечное УФ-излучение info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2021 ftjaaresearch https://doi.org/10.30758/0555-2648-2021-67-2-177-20710.30758/0555-2648-2021-67-210.1007/s1121410.1007/s11214-015-0185-410.3367/UFNe.2017.03.03809110.1016/j.scitotenv.2019.07.04810.1029/2009JD01314210.5194/acp-11-1979-201110.1029/2001JD10.1029/1999GL900121 2024-05-31T03:22:51Z The review generalizes experimental data on the relationships between the solar activity agents (space weather) and atmosphere constituents. It is shown that high-energy solar protons (SPE) make a powerful impact on photo-chemical processes in the polar areas and, correspondingly, on atmospheric circulation and planetary cloudiness. Variations of the solar UV irradiance modulate the descent rate of the zonal wind in the equatorial stratosphere in the course of quasi-biennial oscillation (QBO), and thus control the total duration (period) of the QBO cycle and, correspondingly, the seasonal ozone depletion in the Antarctic. The geo-effective solar wind impacts on the atmospheric wind system in the entire Southern Polar region, and influences the dynamics of the Southern Oscillation (ENSO). В обзоре обобщены экспериментальные данные о влиянии космической погоды на земную атмосферу. Показано, что высокоэнергичные солнечные протоны (SPE) оказывают мощное воздействие на фотохимические процессы в полярных областях и, соответственно, на атмосферную циркуляцию и планетарную облачность. Вариации солнечного УФ-излучения моделируют скорость спуска зональных ветров в экваториальной стратосфере в ходе квазидвухлетней осцилляции (QBO) и контролируют, таким образом, общую продолжительность (период) QBO цикла и, соответственно, вариации общего содержания озона в Антарктике. Геоэффективный солнечный ветер воздействует на систему катабатических ветров во всей южной полярной области и влияет на динамику южной осцилляции (ENSO). Article in Journal/Newspaper Antarc* Antarctic Arctic Arctic and Antarctic Research Antarctic The Antarctic Arctic and Antarctic Research 67 2 177 207