Li/Mg systematics in scleractinian corals : calibration of the thermometer

We show that the Li/Mg systematics of a large suite of aragonitic coral skeletons, representing a wide range of species inhabiting disparate environments, provides a robust proxy for ambient seawater temperature. The corals encompass both zooxanthellate and azooxanthellate species (Acropora sp., Por...

Full description

Bibliographic Details
Main Authors: Montagna, P., McCulloch, M., Douville, E., Correa, M. L., Trotter, J., Rodolfo-Metalpa, Riccardo, Dissard, Delphine, Ferrier-Pages, C., Frank, N., Freiwald, A., Goldstein, S., Mazzoli, C., Reynaud, S., Ruggeberg, A., Russo, S., Taviani, M.
Format: Text
Language:English
Published: 2014
Subjects:
Online Access:http://www.documentation.ird.fr/hor/fdi:010061965
id ftird:oai:ird.fr:fdi:010061965
record_format openpolar
spelling ftird:oai:ird.fr:fdi:010061965 2023-05-15T17:08:50+02:00 Li/Mg systematics in scleractinian corals : calibration of the thermometer Montagna, P. McCulloch, M. Douville, E. Correa, M. L. Trotter, J. Rodolfo-Metalpa, Riccardo Dissard, Delphine Ferrier-Pages, C. Frank, N. Freiwald, A. Goldstein, S. Mazzoli, C. Reynaud, S. Ruggeberg, A. Russo, S. Taviani, M. MEDITERRANEE ATLANTIQUE PACIFIQUE OCEAN AUSTRAL 2014 http://www.documentation.ird.fr/hor/fdi:010061965 EN eng http://www.documentation.ird.fr/hor/fdi:010061965 oai:ird.fr:fdi:010061965 Montagna P., McCulloch M., Douville E., Correa M. L., Trotter J., Rodolfo-Metalpa Riccardo, Dissard Delphine, Ferrier-Pages C., Frank N., Freiwald A., Goldstein S., Mazzoli C., Reynaud S., Ruggeberg A., Russo S., Taviani M. Li/Mg systematics in scleractinian corals : calibration of the thermometer. Geochimica et Cosmochimica Acta, 2014, 132, p. 288-310. text 2014 ftird 2020-08-21T06:53:43Z We show that the Li/Mg systematics of a large suite of aragonitic coral skeletons, representing a wide range of species inhabiting disparate environments, provides a robust proxy for ambient seawater temperature. The corals encompass both zooxanthellate and azooxanthellate species (Acropora sp., Porites sp., Cladocora caespitosa, Lophelia pertusa, Madrepora oculata and Flabellum impensum) collected from shallow, intermediate, and deep-water habitats, as well as specimens cultured in tanks under temperature-controlled conditions. The Li/Mg ratios observed in corals from these diverse tropical, temperate, and deep-water environments are shown to be highly correlated with temperature, giving an exponential temperature relationship of: Li/Mg (mmol/mol) = 5.41 exp (-0.049 * T) (r(2) = 0.975, n = 49). Based on the standard error of the Li/Mg versus temperature correlation, we obtain a typical precision of +/- 0.9 degrees C for the wide range of species analysed, similar or better than that of other less robust coral temperature proxies such as Sr/Ca ratios. The robustness and species independent character of the Li/Mg temperature proxy is shown to be the result of the normalization of Li to Mg, effectively eliminating the precipitation efficiency component such that temperature remains as the main controller of coral Li/Mg compositions. This is inferred from analysis of corresponding Li/Ca and Mg/Ca ratios with both ratios showing strong microstructure-related co-variations between the fibrous aragonite and centres of calcification, a characteristic that we attribute to varying physiological controls on growth rate. Furthermore, Li/Ca ratios show an offset between more rapidly growing zooxanthellate and azooxanthellate corals, and hence only an approximately inverse relationship to seawater temperature. Mg/Ca ratios show very strong physiological controls on growth rate but no significant dependence with temperature, except possibly for Acropora sp. and Porites sp. A strong positive correlation is nevertheless found between Li/Ca and Mg/Ca ratios at similar temperatures, indicating that both Li and Mg are subject to control by similar growth mechanisms, specifically the mass fraction of aragonite precipitated during calcification, which is shown to be consistent with a Rayleigh-based elemental fractionation model. The highly coherent array defined by Li/Mg versus temperature is thus largely independent of coral calcification mechanisms, with the strong temperature dependence reflecting the greater sensitivity of the Kd Li/Ca partition coefficient relative to Kd Mg/Ca. Accordingly, Li/Mg ratios exhibit a highly coherent exponential correlation with temperature, thereby providing a more robust tool for reconstructing paleo-seawater temperatures. Text Lophelia pertusa IRD (Institute de recherche pour le développement): Horizon Austral
institution Open Polar
collection IRD (Institute de recherche pour le développement): Horizon
op_collection_id ftird
language English
description We show that the Li/Mg systematics of a large suite of aragonitic coral skeletons, representing a wide range of species inhabiting disparate environments, provides a robust proxy for ambient seawater temperature. The corals encompass both zooxanthellate and azooxanthellate species (Acropora sp., Porites sp., Cladocora caespitosa, Lophelia pertusa, Madrepora oculata and Flabellum impensum) collected from shallow, intermediate, and deep-water habitats, as well as specimens cultured in tanks under temperature-controlled conditions. The Li/Mg ratios observed in corals from these diverse tropical, temperate, and deep-water environments are shown to be highly correlated with temperature, giving an exponential temperature relationship of: Li/Mg (mmol/mol) = 5.41 exp (-0.049 * T) (r(2) = 0.975, n = 49). Based on the standard error of the Li/Mg versus temperature correlation, we obtain a typical precision of +/- 0.9 degrees C for the wide range of species analysed, similar or better than that of other less robust coral temperature proxies such as Sr/Ca ratios. The robustness and species independent character of the Li/Mg temperature proxy is shown to be the result of the normalization of Li to Mg, effectively eliminating the precipitation efficiency component such that temperature remains as the main controller of coral Li/Mg compositions. This is inferred from analysis of corresponding Li/Ca and Mg/Ca ratios with both ratios showing strong microstructure-related co-variations between the fibrous aragonite and centres of calcification, a characteristic that we attribute to varying physiological controls on growth rate. Furthermore, Li/Ca ratios show an offset between more rapidly growing zooxanthellate and azooxanthellate corals, and hence only an approximately inverse relationship to seawater temperature. Mg/Ca ratios show very strong physiological controls on growth rate but no significant dependence with temperature, except possibly for Acropora sp. and Porites sp. A strong positive correlation is nevertheless found between Li/Ca and Mg/Ca ratios at similar temperatures, indicating that both Li and Mg are subject to control by similar growth mechanisms, specifically the mass fraction of aragonite precipitated during calcification, which is shown to be consistent with a Rayleigh-based elemental fractionation model. The highly coherent array defined by Li/Mg versus temperature is thus largely independent of coral calcification mechanisms, with the strong temperature dependence reflecting the greater sensitivity of the Kd Li/Ca partition coefficient relative to Kd Mg/Ca. Accordingly, Li/Mg ratios exhibit a highly coherent exponential correlation with temperature, thereby providing a more robust tool for reconstructing paleo-seawater temperatures.
format Text
author Montagna, P.
McCulloch, M.
Douville, E.
Correa, M. L.
Trotter, J.
Rodolfo-Metalpa, Riccardo
Dissard, Delphine
Ferrier-Pages, C.
Frank, N.
Freiwald, A.
Goldstein, S.
Mazzoli, C.
Reynaud, S.
Ruggeberg, A.
Russo, S.
Taviani, M.
spellingShingle Montagna, P.
McCulloch, M.
Douville, E.
Correa, M. L.
Trotter, J.
Rodolfo-Metalpa, Riccardo
Dissard, Delphine
Ferrier-Pages, C.
Frank, N.
Freiwald, A.
Goldstein, S.
Mazzoli, C.
Reynaud, S.
Ruggeberg, A.
Russo, S.
Taviani, M.
Li/Mg systematics in scleractinian corals : calibration of the thermometer
author_facet Montagna, P.
McCulloch, M.
Douville, E.
Correa, M. L.
Trotter, J.
Rodolfo-Metalpa, Riccardo
Dissard, Delphine
Ferrier-Pages, C.
Frank, N.
Freiwald, A.
Goldstein, S.
Mazzoli, C.
Reynaud, S.
Ruggeberg, A.
Russo, S.
Taviani, M.
author_sort Montagna, P.
title Li/Mg systematics in scleractinian corals : calibration of the thermometer
title_short Li/Mg systematics in scleractinian corals : calibration of the thermometer
title_full Li/Mg systematics in scleractinian corals : calibration of the thermometer
title_fullStr Li/Mg systematics in scleractinian corals : calibration of the thermometer
title_full_unstemmed Li/Mg systematics in scleractinian corals : calibration of the thermometer
title_sort li/mg systematics in scleractinian corals : calibration of the thermometer
publishDate 2014
url http://www.documentation.ird.fr/hor/fdi:010061965
op_coverage MEDITERRANEE
ATLANTIQUE
PACIFIQUE
OCEAN AUSTRAL
geographic Austral
geographic_facet Austral
genre Lophelia pertusa
genre_facet Lophelia pertusa
op_relation http://www.documentation.ird.fr/hor/fdi:010061965
oai:ird.fr:fdi:010061965
Montagna P., McCulloch M., Douville E., Correa M. L., Trotter J., Rodolfo-Metalpa Riccardo, Dissard Delphine, Ferrier-Pages C., Frank N., Freiwald A., Goldstein S., Mazzoli C., Reynaud S., Ruggeberg A., Russo S., Taviani M. Li/Mg systematics in scleractinian corals : calibration of the thermometer. Geochimica et Cosmochimica Acta, 2014, 132, p. 288-310.
_version_ 1766064720697098240