Characterizing diurnal and interannual variability in the atmosphere through physical and stochastic models

Mathematical models are commonplace in atmospheric science and continue to provide insight into processes across spatial and temporal scales. The study of climate dynamics relies on a spectrum of mathematical models, ranging from physical models based on the governing equations of fluid dynamics to...

Full description

Bibliographic Details
Main Author: Hobbs, Jonathan Michael
Format: Text
Language:English
Published: Iowa State University Digital Repository 2014
Subjects:
Online Access:https://lib.dr.iastate.edu/etd/13648
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=4655&context=etd
id ftiowastateuniv:oai:lib.dr.iastate.edu:etd-4655
record_format openpolar
spelling ftiowastateuniv:oai:lib.dr.iastate.edu:etd-4655 2023-05-15T17:36:03+02:00 Characterizing diurnal and interannual variability in the atmosphere through physical and stochastic models Hobbs, Jonathan Michael 2014-01-01T08:00:00Z application/pdf https://lib.dr.iastate.edu/etd/13648 https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=4655&context=etd en eng Iowa State University Digital Repository https://lib.dr.iastate.edu/etd/13648 https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=4655&context=etd Graduate Theses and Dissertations Bayesian statistics Climate dynamics Hierarchical model North Atlantic Oscillation Spatial statistics Water cycle Meteorology Statistics and Probability text 2014 ftiowastateuniv 2018-11-26T01:27:59Z Mathematical models are commonplace in atmospheric science and continue to provide insight into processes across spatial and temporal scales. The study of climate dynamics relies on a spectrum of mathematical models, ranging from physical models based on the governing equations of fluid dynamics to statistical models that utilize probability to represent climate as the distribution of weather events. Hierarchical statistical models, which utilize multiple levels of conditional probability distributions, provide a framework for combining the principles or actual mathematical framework of physical models into statistical models. Development of computational tools for Bayesian analysis of hierarchical models has improved their utility, and spatio-temporal models are often implemented for climate applications. In three papers, this dissertation implements several physical and statistical models to investigate modes of variability in the climate system. The first paper develops statistical models for the diurnal cycle of relative humidity while accounting for spatial dependence in the observed realizations. The diurnal cycle varies stochastically from day to day through a dynamic model. The second study focuses on the interannual variability of large-scale stationary disturbances in the Northern Hemisphere winter circulation. The stationary waves are maintained by forcing mechanisms including anomalous heating patterns and the mean flow. Through an experiment with a numerical model, this study investigates the stationary wave response to variations in heating and the mean wind. The third component investigates the diurnal behavior of the atmospheric hydrological cycle. The study's analysis focuses on the conditional distributions of water vapor flux divergence given neighboring values. This aids the construction of a hierarchical spatial statistical model with random conditional variances. Bayesian analysis for a spatio-temporal version of the model includes posterior predictive diagnostics based on empirical conditional moments. Text North Atlantic North Atlantic oscillation Digital Repository @ Iowa State University
institution Open Polar
collection Digital Repository @ Iowa State University
op_collection_id ftiowastateuniv
language English
topic Bayesian statistics
Climate dynamics
Hierarchical model
North Atlantic Oscillation
Spatial statistics
Water cycle
Meteorology
Statistics and Probability
spellingShingle Bayesian statistics
Climate dynamics
Hierarchical model
North Atlantic Oscillation
Spatial statistics
Water cycle
Meteorology
Statistics and Probability
Hobbs, Jonathan Michael
Characterizing diurnal and interannual variability in the atmosphere through physical and stochastic models
topic_facet Bayesian statistics
Climate dynamics
Hierarchical model
North Atlantic Oscillation
Spatial statistics
Water cycle
Meteorology
Statistics and Probability
description Mathematical models are commonplace in atmospheric science and continue to provide insight into processes across spatial and temporal scales. The study of climate dynamics relies on a spectrum of mathematical models, ranging from physical models based on the governing equations of fluid dynamics to statistical models that utilize probability to represent climate as the distribution of weather events. Hierarchical statistical models, which utilize multiple levels of conditional probability distributions, provide a framework for combining the principles or actual mathematical framework of physical models into statistical models. Development of computational tools for Bayesian analysis of hierarchical models has improved their utility, and spatio-temporal models are often implemented for climate applications. In three papers, this dissertation implements several physical and statistical models to investigate modes of variability in the climate system. The first paper develops statistical models for the diurnal cycle of relative humidity while accounting for spatial dependence in the observed realizations. The diurnal cycle varies stochastically from day to day through a dynamic model. The second study focuses on the interannual variability of large-scale stationary disturbances in the Northern Hemisphere winter circulation. The stationary waves are maintained by forcing mechanisms including anomalous heating patterns and the mean flow. Through an experiment with a numerical model, this study investigates the stationary wave response to variations in heating and the mean wind. The third component investigates the diurnal behavior of the atmospheric hydrological cycle. The study's analysis focuses on the conditional distributions of water vapor flux divergence given neighboring values. This aids the construction of a hierarchical spatial statistical model with random conditional variances. Bayesian analysis for a spatio-temporal version of the model includes posterior predictive diagnostics based on empirical conditional moments.
format Text
author Hobbs, Jonathan Michael
author_facet Hobbs, Jonathan Michael
author_sort Hobbs, Jonathan Michael
title Characterizing diurnal and interannual variability in the atmosphere through physical and stochastic models
title_short Characterizing diurnal and interannual variability in the atmosphere through physical and stochastic models
title_full Characterizing diurnal and interannual variability in the atmosphere through physical and stochastic models
title_fullStr Characterizing diurnal and interannual variability in the atmosphere through physical and stochastic models
title_full_unstemmed Characterizing diurnal and interannual variability in the atmosphere through physical and stochastic models
title_sort characterizing diurnal and interannual variability in the atmosphere through physical and stochastic models
publisher Iowa State University Digital Repository
publishDate 2014
url https://lib.dr.iastate.edu/etd/13648
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=4655&context=etd
genre North Atlantic
North Atlantic oscillation
genre_facet North Atlantic
North Atlantic oscillation
op_source Graduate Theses and Dissertations
op_relation https://lib.dr.iastate.edu/etd/13648
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=4655&context=etd
_version_ 1766135409070309376