Climate Warming and Effects on Aviation

The greatest concerns of the aviation industry under a warming climate possibly are the following two questions: first, what are the consequences for maximum payloads? and second, will changed air properties (density, temperature and viscosity) affect fuel efficiency? Here, the effects of climate wa...

Full description

Bibliographic Details
Main Authors: Ren, Diandong, Leslie, Lance M.
Format: Other/Unknown Material
Language:English
Published: IntechOpen 2019
Subjects:
Online Access:https://mts.intechopen.com/articles/show/title/climate-warming-and-effects-on-aviation
https://doi.org/10.5772/intechopen.86871
Description
Summary:The greatest concerns of the aviation industry under a warming climate possibly are the following two questions: first, what are the consequences for maximum payloads? and second, will changed air properties (density, temperature and viscosity) affect fuel efficiency? Here, the effects of climate warming on maximum payload and fuel efficiency are examined using atmospheric parameters from 27 climate models. Historical (20th century) climate simulations credibly reproduce the reanalysis period (1950–2015) of near-surface air density (NSAD). Lower NSAD is a first-order global signal continuing into the future. The NSAD reduction impact on MTOW could be ∼1% over the busy North Atlantic Corridor (NAC), and also varies among aircraft. Furthermore, for the standard 7-stage flight profile, negative effects of warming on fuel efficiency affect civil aviation. The cruising stage consumes most aviation fuel, and as cruising altitude coincides with the tropopause, the tropopause structure in a warming climate supports the conclusions drawn here. Tropopause temperature changes cause only ∼0.08% reduction in thermal efficiency. The net effect on total efficiency is smaller because of improved mechanical efficiency. Work required for a commercial aircraft increases in a warmer climate due to elevated tropopause altitude and increased air drag. The latter outweigh the former by almost an order of magnitude, for international flights.