id ftinsu:oai:HAL:tel-01867399v1
record_format openpolar
spelling ftinsu:oai:HAL:tel-01867399v1 2024-04-28T08:07:01+00:00 Coupled evolution of snow, permafrost and vegetation in the arctic and subarctic Evolution couplée de la neige, du pergélisol et de la végétation arctique et subarctique Barrere, Mathieu Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Université Grenoble Alpes Université Laval (Québec, Canada) Florent Dominé Samuel Morin Stéphane Boudreau 2018-03-29 https://theses.hal.science/tel-01867399 https://theses.hal.science/tel-01867399/document https://theses.hal.science/tel-01867399/file/Barrere_2018_archivage.pdf fr fre HAL CCSD NNT: 2018GREAU008 tel-01867399 https://theses.hal.science/tel-01867399 https://theses.hal.science/tel-01867399/document https://theses.hal.science/tel-01867399/file/Barrere_2018_archivage.pdf info:eu-repo/semantics/OpenAccess https://theses.hal.science/tel-01867399 Sciences de la Terre. Université Grenoble Alpes; Université Laval (Québec, Canada), 2018. Français. ⟨NNT : 2018GREAU008⟩ Snow Permafrost Vegetation Arctic Crocus Thermal conductivity Neige Pergélisol Végétation Arctique Conductivité thermique [SDU.STU]Sciences of the Universe [physics]/Earth Sciences info:eu-repo/semantics/doctoralThesis Theses 2018 ftinsu 2024-04-05T00:45:22Z Permafrost is a major component of the Earth climatic system. Global warming provokes the degradation of permafrost which favors biogeochemical activity in Arctic soils. The decomposition of organic matter increases and results in the release of high amounts of greenhouse gases (CO2 and CH4) to the atmosphere. By amplifying the greenhouse effect induced by human activities, this phenomenon may constitute one of the strongest positive feedbacks on global warming. Predicting these effects requires to study the evolution of the permafrost thermal regime and the factors governing it. The snowpack, because of its insulating effect, modulates the heat fluxes between permafrost and atmosphere most of the year. The snow insulating capacity depends on snow height and thermal conductivity. These two variables are highly dependent on climatic conditions and on the presence of vegetation. Here we monitor the snow and soil physical properties at a high Arctic site typical of herbaceous tundra (Bylot Island, 73°N), and at a low Arctic site situated at the limit between shrub and forest tundra (Umiujaq, 56°N). We use data from automatic measurement stations and manual measurements. A special attention is given to the snow thermal conductivity because very few data are available for Arctic regions. Results are interpreted in relation to vegetation type and atmospheric conditions. The numerical coupled model ISBA-Crocus is then used to simulate snow and soil properties at our sites. Results are compared to field data in order to evaluate the model capacity to accurately simulate the permafrost thermal regime.We managed to describe atmosphere-snow-vegetation interactions that shape the structure of Arctic snowpacks. Wind and the snow redistribution it induces are fundamental parameters governing snow height and thermal conductivity. A high vegetation cover (i.e. shrubs and forest) traps blowing snow and shields it from wind compaction. Vegetation growth thus favors the formation of an insulating snowpack which slows down or even ... Doctoral or Postdoctoral Thesis Arctic Arctique* Bylot Island Global warming permafrost Subarctic subarctique* Tundra Umiujaq pergélisol Institut national des sciences de l'Univers: HAL-INSU
institution Open Polar
collection Institut national des sciences de l'Univers: HAL-INSU
op_collection_id ftinsu
language French
topic Snow
Permafrost
Vegetation
Arctic
Crocus
Thermal conductivity
Neige
Pergélisol
Végétation
Arctique
Conductivité thermique
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
spellingShingle Snow
Permafrost
Vegetation
Arctic
Crocus
Thermal conductivity
Neige
Pergélisol
Végétation
Arctique
Conductivité thermique
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
Barrere, Mathieu
Coupled evolution of snow, permafrost and vegetation in the arctic and subarctic
topic_facet Snow
Permafrost
Vegetation
Arctic
Crocus
Thermal conductivity
Neige
Pergélisol
Végétation
Arctique
Conductivité thermique
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
description Permafrost is a major component of the Earth climatic system. Global warming provokes the degradation of permafrost which favors biogeochemical activity in Arctic soils. The decomposition of organic matter increases and results in the release of high amounts of greenhouse gases (CO2 and CH4) to the atmosphere. By amplifying the greenhouse effect induced by human activities, this phenomenon may constitute one of the strongest positive feedbacks on global warming. Predicting these effects requires to study the evolution of the permafrost thermal regime and the factors governing it. The snowpack, because of its insulating effect, modulates the heat fluxes between permafrost and atmosphere most of the year. The snow insulating capacity depends on snow height and thermal conductivity. These two variables are highly dependent on climatic conditions and on the presence of vegetation. Here we monitor the snow and soil physical properties at a high Arctic site typical of herbaceous tundra (Bylot Island, 73°N), and at a low Arctic site situated at the limit between shrub and forest tundra (Umiujaq, 56°N). We use data from automatic measurement stations and manual measurements. A special attention is given to the snow thermal conductivity because very few data are available for Arctic regions. Results are interpreted in relation to vegetation type and atmospheric conditions. The numerical coupled model ISBA-Crocus is then used to simulate snow and soil properties at our sites. Results are compared to field data in order to evaluate the model capacity to accurately simulate the permafrost thermal regime.We managed to describe atmosphere-snow-vegetation interactions that shape the structure of Arctic snowpacks. Wind and the snow redistribution it induces are fundamental parameters governing snow height and thermal conductivity. A high vegetation cover (i.e. shrubs and forest) traps blowing snow and shields it from wind compaction. Vegetation growth thus favors the formation of an insulating snowpack which slows down or even ...
author2 Institut des Géosciences de l’Environnement (IGE)
Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
Université Grenoble Alpes
Université Laval (Québec, Canada)
Florent Dominé
Samuel Morin
Stéphane Boudreau
format Doctoral or Postdoctoral Thesis
author Barrere, Mathieu
author_facet Barrere, Mathieu
author_sort Barrere, Mathieu
title Coupled evolution of snow, permafrost and vegetation in the arctic and subarctic
title_short Coupled evolution of snow, permafrost and vegetation in the arctic and subarctic
title_full Coupled evolution of snow, permafrost and vegetation in the arctic and subarctic
title_fullStr Coupled evolution of snow, permafrost and vegetation in the arctic and subarctic
title_full_unstemmed Coupled evolution of snow, permafrost and vegetation in the arctic and subarctic
title_sort coupled evolution of snow, permafrost and vegetation in the arctic and subarctic
publisher HAL CCSD
publishDate 2018
url https://theses.hal.science/tel-01867399
https://theses.hal.science/tel-01867399/document
https://theses.hal.science/tel-01867399/file/Barrere_2018_archivage.pdf
genre Arctic
Arctique*
Bylot Island
Global warming
permafrost
Subarctic
subarctique*
Tundra
Umiujaq
pergélisol
genre_facet Arctic
Arctique*
Bylot Island
Global warming
permafrost
Subarctic
subarctique*
Tundra
Umiujaq
pergélisol
op_source https://theses.hal.science/tel-01867399
Sciences de la Terre. Université Grenoble Alpes; Université Laval (Québec, Canada), 2018. Français. ⟨NNT : 2018GREAU008⟩
op_relation NNT: 2018GREAU008
tel-01867399
https://theses.hal.science/tel-01867399
https://theses.hal.science/tel-01867399/document
https://theses.hal.science/tel-01867399/file/Barrere_2018_archivage.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1797576283574501376