Simulating marine neodymium isotope distributions using Nd v1.0 coupled to the ocean component of the FAMOUS-MOSES1 climate model: sensitivities to reversible scavenging efficiency and benthic source distributions
International audience The neodymium (Nd) isotopic composition of seawater is a widely used ocean circulation tracer. However, uncertainty in quantifying the global ocean Nd budget, particularly constraining elusive non-conservative processes, remains a major challenge. A substantial increase in mod...
Published in: | Geoscientific Model Development |
---|---|
Main Authors: | , , , , , , , , |
Other Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2023
|
Subjects: | |
Online Access: | https://insu.hal.science/insu-04131495 https://insu.hal.science/insu-04131495/document https://insu.hal.science/insu-04131495/file/gmd-16-1231-2023.pdf https://doi.org/10.5194/gmd-16-1231-2023 |
Summary: | International audience The neodymium (Nd) isotopic composition of seawater is a widely used ocean circulation tracer. However, uncertainty in quantifying the global ocean Nd budget, particularly constraining elusive non-conservative processes, remains a major challenge. A substantial increase in modern seawater Nd measurements from the GEOTRACES programme, coupled with recent hypotheses that a seafloor-wide benthic Nd flux to the ocean may govern global Nd isotope distributions (ε Nd ), presents an opportunity to develop a new scheme specifically designed to test these paradigms. Here, we present the implementation of Nd isotopes ( 143 Nd and 144 Nd) into the ocean component of the FAMOUS coupled atmosphere-ocean general circulation model (Nd v1.0), a tool which can be widely used for simulating complex feedbacks between different Earth system processes on decadal to multi-millennial timescales. Using an equilibrium pre-industrial simulation tuned to represent the large-scale Atlantic Ocean circulation, we perform a series of sensitivity tests evaluating the new Nd isotope scheme. We investigate how Nd source and sink and cycling parameters govern global marine ε Nd distributions and provide an updated compilation of 6048 Nd concentrations and 3278 ε Nd measurements to assess model performance. Our findings support the notions that reversible scavenging is a key process for enhancing the Atlantic-Pacific basinal ε Nd gradient and is capable of driving the observed increase in Nd concentration along the global circulation pathway. A benthic flux represents a major source of Nd to the deep ocean. However, model-data disparities in the North Pacific highlight that under a uniform benthic flux, the source of ε Nd from seafloor sediments is too non-radiogenic in our model to be able to accurately represent seawater measurements. Additionally, model-data mismatch in the northern North Atlantic alludes to the possibility of preferential contributions from "reactive" non-radiogenic detrital sediments. The new Nd ... |
---|