Pre-collapse motion of the February 2021 Chamoli rock-ice avalanche, Indian Himalaya

International audience Landslides are a major geohazard that cause thousands of fatalities every year. Despite their importance, identifying unstable slopes and forecasting collapses remains a major challenge. In this study, we use the 7 February 2021 Chamoli rock-ice avalanche as a data-rich exampl...

Full description

Bibliographic Details
Published in:Natural Hazards and Earth System Sciences
Main Authors: van Wyk de Vries, Maximillian, Bhushan, Shashank, Jacquemart, Mylène, Deschamps-Berger, César, Berthier, Etienne, Gascoin, Simon, Shean, David E., Shugar, Dan H., Kääb, Andreas
Other Authors: Centre d'études spatiales de la biosphère (CESBIO), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Ice
Online Access:https://insu.hal.science/insu-03863698
https://insu.hal.science/insu-03863698/document
https://insu.hal.science/insu-03863698/file/nhess-22-3309-2022.pdf
https://doi.org/10.5194/nhess-22-3309-2022
id ftinsu:oai:HAL:insu-03863698v1
record_format openpolar
institution Open Polar
collection Institut national des sciences de l'Univers: HAL-INSU
op_collection_id ftinsu
language English
topic [SDU]Sciences of the Universe [physics]
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
spellingShingle [SDU]Sciences of the Universe [physics]
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
van Wyk de Vries, Maximillian
Bhushan, Shashank
Jacquemart, Mylène
Deschamps-Berger, César
Berthier, Etienne
Gascoin, Simon
Shean, David E.
Shugar, Dan H.
Kääb, Andreas
Pre-collapse motion of the February 2021 Chamoli rock-ice avalanche, Indian Himalaya
topic_facet [SDU]Sciences of the Universe [physics]
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
description International audience Landslides are a major geohazard that cause thousands of fatalities every year. Despite their importance, identifying unstable slopes and forecasting collapses remains a major challenge. In this study, we use the 7 February 2021 Chamoli rock-ice avalanche as a data-rich example to investigate the potential of remotely sensed datasets for the assessment of slope stability. We investigate imagery over the 3 decades preceding collapse and assess the precursory signs exhibited by this slope prior to the catastrophic collapse. We evaluate monthly slope motion from 2015 to 2021 through feature tracking of high-resolution optical satellite imagery. We then combine these data with a time series of pre- and post-event digital elevation models (DEMs), which we use to evaluate elevation change over the same area. Both datasets show that the 26.9×10 6 m 3 collapse block moved over 10 m horizontally and vertically in the 5 years preceding collapse, with particularly rapid motion occurring in the summers of 2017 and 2018. We propose that the collapse results from a combination of snow loading in a deep headwall crack and permafrost degradation in the heavily jointed bedrock. Despite observing a clear precursory signal, we find that the timing of the Chamoli rock-ice avalanche could likely not have been forecast from satellite data alone. Our results highlight the potential of remotely sensed imagery for assessing landslide hazard in remote areas, but that challenges remain for operational hazard monitoring.
author2 Centre d'études spatiales de la biosphère (CESBIO)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author van Wyk de Vries, Maximillian
Bhushan, Shashank
Jacquemart, Mylène
Deschamps-Berger, César
Berthier, Etienne
Gascoin, Simon
Shean, David E.
Shugar, Dan H.
Kääb, Andreas
author_facet van Wyk de Vries, Maximillian
Bhushan, Shashank
Jacquemart, Mylène
Deschamps-Berger, César
Berthier, Etienne
Gascoin, Simon
Shean, David E.
Shugar, Dan H.
Kääb, Andreas
author_sort van Wyk de Vries, Maximillian
title Pre-collapse motion of the February 2021 Chamoli rock-ice avalanche, Indian Himalaya
title_short Pre-collapse motion of the February 2021 Chamoli rock-ice avalanche, Indian Himalaya
title_full Pre-collapse motion of the February 2021 Chamoli rock-ice avalanche, Indian Himalaya
title_fullStr Pre-collapse motion of the February 2021 Chamoli rock-ice avalanche, Indian Himalaya
title_full_unstemmed Pre-collapse motion of the February 2021 Chamoli rock-ice avalanche, Indian Himalaya
title_sort pre-collapse motion of the february 2021 chamoli rock-ice avalanche, indian himalaya
publisher HAL CCSD
publishDate 2022
url https://insu.hal.science/insu-03863698
https://insu.hal.science/insu-03863698/document
https://insu.hal.science/insu-03863698/file/nhess-22-3309-2022.pdf
https://doi.org/10.5194/nhess-22-3309-2022
geographic Indian
geographic_facet Indian
genre Ice
permafrost
genre_facet Ice
permafrost
op_source ISSN: 1561-8633
EISSN: 1684-9981
Natural Hazards and Earth System Sciences
https://insu.hal.science/insu-03863698
Natural Hazards and Earth System Sciences, 2022, 22, pp.3309-3327. ⟨10.5194/nhess-22-3309-2022⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/nhess-22-3309-2022
insu-03863698
https://insu.hal.science/insu-03863698
https://insu.hal.science/insu-03863698/document
https://insu.hal.science/insu-03863698/file/nhess-22-3309-2022.pdf
BIBCODE: 2022NHESS.22.3309V
doi:10.5194/nhess-22-3309-2022
WOS: 000866555600001
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/nhess-22-3309-2022
container_title Natural Hazards and Earth System Sciences
container_volume 22
container_issue 10
container_start_page 3309
op_container_end_page 3327
_version_ 1790601405952688128
spelling ftinsu:oai:HAL:insu-03863698v1 2024-02-11T10:04:41+01:00 Pre-collapse motion of the February 2021 Chamoli rock-ice avalanche, Indian Himalaya van Wyk de Vries, Maximillian Bhushan, Shashank Jacquemart, Mylène Deschamps-Berger, César Berthier, Etienne Gascoin, Simon Shean, David E. Shugar, Dan H. Kääb, Andreas Centre d'études spatiales de la biosphère (CESBIO) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) 2022 https://insu.hal.science/insu-03863698 https://insu.hal.science/insu-03863698/document https://insu.hal.science/insu-03863698/file/nhess-22-3309-2022.pdf https://doi.org/10.5194/nhess-22-3309-2022 en eng HAL CCSD Copernicus Publ. / European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/nhess-22-3309-2022 insu-03863698 https://insu.hal.science/insu-03863698 https://insu.hal.science/insu-03863698/document https://insu.hal.science/insu-03863698/file/nhess-22-3309-2022.pdf BIBCODE: 2022NHESS.22.3309V doi:10.5194/nhess-22-3309-2022 WOS: 000866555600001 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1561-8633 EISSN: 1684-9981 Natural Hazards and Earth System Sciences https://insu.hal.science/insu-03863698 Natural Hazards and Earth System Sciences, 2022, 22, pp.3309-3327. ⟨10.5194/nhess-22-3309-2022⟩ [SDU]Sciences of the Universe [physics] [SDU.STU]Sciences of the Universe [physics]/Earth Sciences info:eu-repo/semantics/article Journal articles 2022 ftinsu https://doi.org/10.5194/nhess-22-3309-2022 2024-01-24T17:27:50Z International audience Landslides are a major geohazard that cause thousands of fatalities every year. Despite their importance, identifying unstable slopes and forecasting collapses remains a major challenge. In this study, we use the 7 February 2021 Chamoli rock-ice avalanche as a data-rich example to investigate the potential of remotely sensed datasets for the assessment of slope stability. We investigate imagery over the 3 decades preceding collapse and assess the precursory signs exhibited by this slope prior to the catastrophic collapse. We evaluate monthly slope motion from 2015 to 2021 through feature tracking of high-resolution optical satellite imagery. We then combine these data with a time series of pre- and post-event digital elevation models (DEMs), which we use to evaluate elevation change over the same area. Both datasets show that the 26.9×10 6 m 3 collapse block moved over 10 m horizontally and vertically in the 5 years preceding collapse, with particularly rapid motion occurring in the summers of 2017 and 2018. We propose that the collapse results from a combination of snow loading in a deep headwall crack and permafrost degradation in the heavily jointed bedrock. Despite observing a clear precursory signal, we find that the timing of the Chamoli rock-ice avalanche could likely not have been forecast from satellite data alone. Our results highlight the potential of remotely sensed imagery for assessing landslide hazard in remote areas, but that challenges remain for operational hazard monitoring. Article in Journal/Newspaper Ice permafrost Institut national des sciences de l'Univers: HAL-INSU Indian Natural Hazards and Earth System Sciences 22 10 3309 3327