Sources, Load, Vertical Distribution, and Fate of Wintertime Aerosols North of Svalbard From Combined V4 CALIOP Data, Ground-Based IAOOS Lidar Observations and Trajectory Analysis

International audience We have analyzed aerosol properties at the regional scale over high Arctic north of Svalbard between October 2014 and June 2015 from version 4 (V4) CALIOP (Cloud and Aerosol Lidar with Orthogonal Polarization) space-borne observations and compared results with surface lidar ob...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Di Biagio, Claudia, Pelon, Jacques, Ancellet, Gérard, Bazureau, Ariane, Mariage, Vincent
Other Authors: Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), TROPO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2018
Subjects:
Online Access:https://insu.hal.science/insu-01682118
https://insu.hal.science/insu-01682118/document
https://insu.hal.science/insu-01682118/file/Di_Biagio_et_al-2018-Journal_of_Geophysical_Research__Atmospheres_sans%20marque.pdf
https://doi.org/10.1002/2017JD027530
Description
Summary:International audience We have analyzed aerosol properties at the regional scale over high Arctic north of Svalbard between October 2014 and June 2015 from version 4 (V4) CALIOP (Cloud and Aerosol Lidar with Orthogonal Polarization) space-borne observations and compared results with surface lidar observations from IAOOS (Ice-Atmosphere-Ocean Observing System) platforms. CALIOP data indicate a maximum in aerosol occurrence at the end of winter attributed to low–level (0-2 km) and mid–tropospheric (2-5 km) particles identified in CALIOP V4 product as being mostly of dust origin. Another maximum was observed in October–December attributed to clean marine particles below 2 km and smoke and dust above. The 532 nm aerosol extinction was in the range 1-8 Mm -1 (0–2 km), 1-18 Mm -1 (2–5 km), and 0-6 Mm -1 (5–10 km), a factor 2 lower compared to values previously reported using CALIOP V3 dataset. Aerosols are identified from trajectory analyses to originate mostly from Russia/Europe at all altitudes, and also North America above 2 km, and it is concluded that dust and clean marine types are most probably overrepresented in the analyzed CALIOP dataset. It is proposed that most part of dust types are diamond dust, while part of clean marine are polluted species, as corroborated from co–located polarized lidar IAOOS observations. IAOOS observations allowed confirming the identified sensitivity of CALIOP with a particle backscatter coefficient of ~0.001 km-1sr-1 at 532 nm. For optically thicker layers CALIOP is shown to be a valuable tool to follow transport of aerosol layers in the Arctic and identify their possible modifications.