Spatio-temporal variations of nitric acid total columns from 9 years of IASI measurements – a driver study
International audience This study aims at understanding the spatial and temporal variability of HNO3 total columns in terms of explanatory variables. To achieve this, multiple linear regressions are used to fit satellite-derived time series of HNO3 daily averaged total columns. First, an analysis of...
Published in: | Atmospheric Chemistry and Physics |
---|---|
Main Authors: | , , , , |
Other Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2018
|
Subjects: | |
Online Access: | https://insu.hal.science/insu-01649697 https://insu.hal.science/insu-01649697/document https://insu.hal.science/insu-01649697/file/acp-18-4403-2018.pdf https://doi.org/10.5194/acp-18-4403-2018 |
id |
ftinsu:oai:HAL:insu-01649697v1 |
---|---|
record_format |
openpolar |
spelling |
ftinsu:oai:HAL:insu-01649697v1 2023-11-05T03:35:05+01:00 Spatio-temporal variations of nitric acid total columns from 9 years of IASI measurements – a driver study Ronsmans, Gaetane Wespes, Catherine Hurtmans, Daniel Clerbaux, Cathy Coheur, Pierre-François Spectroscopie de l'atmosphère, Service de Chimie Quantique et Photophysique Université libre de Bruxelles (ULB) TROPO - LATMOS Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) 2018 https://insu.hal.science/insu-01649697 https://insu.hal.science/insu-01649697/document https://insu.hal.science/insu-01649697/file/acp-18-4403-2018.pdf https://doi.org/10.5194/acp-18-4403-2018 en eng HAL CCSD European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-18-4403-2018 insu-01649697 https://insu.hal.science/insu-01649697 https://insu.hal.science/insu-01649697/document https://insu.hal.science/insu-01649697/file/acp-18-4403-2018.pdf doi:10.5194/acp-18-4403-2018 info:eu-repo/semantics/OpenAccess ISSN: 1680-7316 EISSN: 1680-7324 Atmospheric Chemistry and Physics https://insu.hal.science/insu-01649697 Atmospheric Chemistry and Physics, 2018, 18, pp.4403-4423. ⟨10.5194/acp-18-4403-2018⟩ [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] info:eu-repo/semantics/article Journal articles 2018 ftinsu https://doi.org/10.5194/acp-18-4403-2018 2023-10-11T16:35:07Z International audience This study aims at understanding the spatial and temporal variability of HNO3 total columns in terms of explanatory variables. To achieve this, multiple linear regressions are used to fit satellite-derived time series of HNO3 daily averaged total columns. First, an analysis of the IASI 9-year time series (2008–2016) is conducted based on various equivalent latitude bands. The strong and systematic denitrification of the southern polar stratosphere is observed very clearly. It is also possible to distinguish, within the polar vortex, three regions wich are differently affected by the denitrification. Three exceptional denitrification episodes in 2011, 2014 and 2016 are also observed in the northern hemisphere, due to unusually low arctic temperatures. The time series are then fitted by multivariate regressions to identify what variables are responsible for HNO3 variability in global distributions and time series, and to quantify their respective influence. Out of an ensemble of proxies (annual cycle, solar flux, quasi-biennial oscillation, multivariate ENSO index, Arctic and Antarctic oscillations and volume of polar stratospheric clouds), only the ones defined as significant (p-value < 0.05) by a selection algorithm are retained for each equivalent latitude band. Overall, the regression gives a good representation of HNO3 variability, with especially good results at high latitudes (60–80 % of the observed variability explained by the model). The regressions show everywhere the dominance of the annual variability, which is related to specific chemistry and dynamic depending on the latitudes. We find that the PSCs also have a major influence in the polar regions, and that their inclusion in the model improves the correlation coefficients and the residuals. However, there is still a relatively large part of the HNO 3 variability that remains unexplained by the model, especially in the intertropical regions, where factors not included in the regression model (such as vegetation fires or lightning) may ... Article in Journal/Newspaper Antarc* Antarctic Arctic Institut national des sciences de l'Univers: HAL-INSU Atmospheric Chemistry and Physics 18 7 4403 4423 |
institution |
Open Polar |
collection |
Institut national des sciences de l'Univers: HAL-INSU |
op_collection_id |
ftinsu |
language |
English |
topic |
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] |
spellingShingle |
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] Ronsmans, Gaetane Wespes, Catherine Hurtmans, Daniel Clerbaux, Cathy Coheur, Pierre-François Spatio-temporal variations of nitric acid total columns from 9 years of IASI measurements – a driver study |
topic_facet |
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] |
description |
International audience This study aims at understanding the spatial and temporal variability of HNO3 total columns in terms of explanatory variables. To achieve this, multiple linear regressions are used to fit satellite-derived time series of HNO3 daily averaged total columns. First, an analysis of the IASI 9-year time series (2008–2016) is conducted based on various equivalent latitude bands. The strong and systematic denitrification of the southern polar stratosphere is observed very clearly. It is also possible to distinguish, within the polar vortex, three regions wich are differently affected by the denitrification. Three exceptional denitrification episodes in 2011, 2014 and 2016 are also observed in the northern hemisphere, due to unusually low arctic temperatures. The time series are then fitted by multivariate regressions to identify what variables are responsible for HNO3 variability in global distributions and time series, and to quantify their respective influence. Out of an ensemble of proxies (annual cycle, solar flux, quasi-biennial oscillation, multivariate ENSO index, Arctic and Antarctic oscillations and volume of polar stratospheric clouds), only the ones defined as significant (p-value < 0.05) by a selection algorithm are retained for each equivalent latitude band. Overall, the regression gives a good representation of HNO3 variability, with especially good results at high latitudes (60–80 % of the observed variability explained by the model). The regressions show everywhere the dominance of the annual variability, which is related to specific chemistry and dynamic depending on the latitudes. We find that the PSCs also have a major influence in the polar regions, and that their inclusion in the model improves the correlation coefficients and the residuals. However, there is still a relatively large part of the HNO 3 variability that remains unexplained by the model, especially in the intertropical regions, where factors not included in the regression model (such as vegetation fires or lightning) may ... |
author2 |
Spectroscopie de l'atmosphère, Service de Chimie Quantique et Photophysique Université libre de Bruxelles (ULB) TROPO - LATMOS Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) |
format |
Article in Journal/Newspaper |
author |
Ronsmans, Gaetane Wespes, Catherine Hurtmans, Daniel Clerbaux, Cathy Coheur, Pierre-François |
author_facet |
Ronsmans, Gaetane Wespes, Catherine Hurtmans, Daniel Clerbaux, Cathy Coheur, Pierre-François |
author_sort |
Ronsmans, Gaetane |
title |
Spatio-temporal variations of nitric acid total columns from 9 years of IASI measurements – a driver study |
title_short |
Spatio-temporal variations of nitric acid total columns from 9 years of IASI measurements – a driver study |
title_full |
Spatio-temporal variations of nitric acid total columns from 9 years of IASI measurements – a driver study |
title_fullStr |
Spatio-temporal variations of nitric acid total columns from 9 years of IASI measurements – a driver study |
title_full_unstemmed |
Spatio-temporal variations of nitric acid total columns from 9 years of IASI measurements – a driver study |
title_sort |
spatio-temporal variations of nitric acid total columns from 9 years of iasi measurements – a driver study |
publisher |
HAL CCSD |
publishDate |
2018 |
url |
https://insu.hal.science/insu-01649697 https://insu.hal.science/insu-01649697/document https://insu.hal.science/insu-01649697/file/acp-18-4403-2018.pdf https://doi.org/10.5194/acp-18-4403-2018 |
genre |
Antarc* Antarctic Arctic |
genre_facet |
Antarc* Antarctic Arctic |
op_source |
ISSN: 1680-7316 EISSN: 1680-7324 Atmospheric Chemistry and Physics https://insu.hal.science/insu-01649697 Atmospheric Chemistry and Physics, 2018, 18, pp.4403-4423. ⟨10.5194/acp-18-4403-2018⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-18-4403-2018 insu-01649697 https://insu.hal.science/insu-01649697 https://insu.hal.science/insu-01649697/document https://insu.hal.science/insu-01649697/file/acp-18-4403-2018.pdf doi:10.5194/acp-18-4403-2018 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.5194/acp-18-4403-2018 |
container_title |
Atmospheric Chemistry and Physics |
container_volume |
18 |
container_issue |
7 |
container_start_page |
4403 |
op_container_end_page |
4423 |
_version_ |
1781707772720578560 |