Performance and applicability of a 2.5-D ice-flow model in the vicinity of a dome

International audience Three-dimensional ice flow modelling requires a large number of computing resources and observation data, such that 2-D simulations are often preferable. However, when there is significant lateral divergence, this must be accounted for (2.5-D models), and a flow tube is consid...

Full description

Bibliographic Details
Published in:Geoscientific Model Development
Main Authors: Passalacqua, Olivier, Gagliardini, Olivier, Parrenin, Frédéric, Todd, Joe, Gillet-Chaulet, Fabien, Ritz, Catherine
Other Authors: Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), Scott Polar Research Institute, University of Cambridge UK (CAM)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2016
Subjects:
Online Access:https://insu.hal.science/insu-01388819
https://insu.hal.science/insu-01388819/document
https://insu.hal.science/insu-01388819/file/GEOSCIENTIFIC%20MODEL%20DEVELOPMENT%20-%20Performance%20and%20applicability%20of%20a%202.5-D%20ice-flow%20model%20in%20the%20vicinity%20of%20a%20dome.pdf
https://doi.org/10.5194/gmd-9-2301-2016
id ftinsu:oai:HAL:insu-01388819v1
record_format openpolar
institution Open Polar
collection Institut national des sciences de l'Univers: HAL-INSU
op_collection_id ftinsu
language English
topic [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
spellingShingle [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
Passalacqua, Olivier
Gagliardini, Olivier
Parrenin, Frédéric
Todd, Joe
Gillet-Chaulet, Fabien
Ritz, Catherine
Performance and applicability of a 2.5-D ice-flow model in the vicinity of a dome
topic_facet [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
description International audience Three-dimensional ice flow modelling requires a large number of computing resources and observation data, such that 2-D simulations are often preferable. However, when there is significant lateral divergence, this must be accounted for (2.5-D models), and a flow tube is considered (volume between two horizontal flowlines). In the absence of velocity observations, this flow tube can be derived assuming that the flowlines follow the steepest slope of the surface, under a few flow assumptions. This method typically consists of scanning a digital elevation model (DEM) with a moving window and computing the curvature at the centre of this window. The ability of the 2.5-D models to account properly for a 3-D state of strain and stress has not clearly been established, nor their sensitivity to the size of the scanning window and to the geometry of the ice surface, for example in the cases of sharp ridges. Here, we study the applicability of a 2.5-D ice flow model around a dome, typical of the East Antarctic plateau conditions. A twin experiment is carried out, comparing 3-D and 2.5-D computed velocities, on three dome geometries, for several scanning windows and thermal conditions. The chosen scanning window used to evaluate the ice surface curvature should be comparable to the typical radius of this curvature. For isothermal ice, the error made by the 2.5-D model is in the range 0–10 % for weakly diverging flows, but is 2 or 3 times higher for highly diverging flows and could lead to a non-physical ice surface at the dome. For non-isothermal ice, assuming a linear temperature profile, the presence of a sharp ridge makes the 2.5-D velocity field unre-alistic. In such cases, the basal ice is warmer and more easily laterally strained than the upper one, the walls of the flow tube are not vertical, and the assumptions of the 2.5-D model are no longer valid.
author2 Laboratoire de glaciologie et géophysique de l'environnement (LGGE)
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
Scott Polar Research Institute
University of Cambridge UK (CAM)
format Article in Journal/Newspaper
author Passalacqua, Olivier
Gagliardini, Olivier
Parrenin, Frédéric
Todd, Joe
Gillet-Chaulet, Fabien
Ritz, Catherine
author_facet Passalacqua, Olivier
Gagliardini, Olivier
Parrenin, Frédéric
Todd, Joe
Gillet-Chaulet, Fabien
Ritz, Catherine
author_sort Passalacqua, Olivier
title Performance and applicability of a 2.5-D ice-flow model in the vicinity of a dome
title_short Performance and applicability of a 2.5-D ice-flow model in the vicinity of a dome
title_full Performance and applicability of a 2.5-D ice-flow model in the vicinity of a dome
title_fullStr Performance and applicability of a 2.5-D ice-flow model in the vicinity of a dome
title_full_unstemmed Performance and applicability of a 2.5-D ice-flow model in the vicinity of a dome
title_sort performance and applicability of a 2.5-d ice-flow model in the vicinity of a dome
publisher HAL CCSD
publishDate 2016
url https://insu.hal.science/insu-01388819
https://insu.hal.science/insu-01388819/document
https://insu.hal.science/insu-01388819/file/GEOSCIENTIFIC%20MODEL%20DEVELOPMENT%20-%20Performance%20and%20applicability%20of%20a%202.5-D%20ice-flow%20model%20in%20the%20vicinity%20of%20a%20dome.pdf
https://doi.org/10.5194/gmd-9-2301-2016
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_source ISSN: 1991-962X
Geoscientific Model Development Discussions
https://insu.hal.science/insu-01388819
Geoscientific Model Development Discussions, 2016, 9 (7), pp.2301-2313. ⟨10.5194/gmd-9-2301-2016⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/gmd-9-2301-2016
insu-01388819
https://insu.hal.science/insu-01388819
https://insu.hal.science/insu-01388819/document
https://insu.hal.science/insu-01388819/file/GEOSCIENTIFIC%20MODEL%20DEVELOPMENT%20-%20Performance%20and%20applicability%20of%20a%202.5-D%20ice-flow%20model%20in%20the%20vicinity%20of%20a%20dome.pdf
doi:10.5194/gmd-9-2301-2016
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/gmd-9-2301-2016
container_title Geoscientific Model Development
container_volume 9
container_issue 7
container_start_page 2301
op_container_end_page 2313
_version_ 1797572801867022336
spelling ftinsu:oai:HAL:insu-01388819v1 2024-04-28T08:00:42+00:00 Performance and applicability of a 2.5-D ice-flow model in the vicinity of a dome Passalacqua, Olivier Gagliardini, Olivier Parrenin, Frédéric Todd, Joe Gillet-Chaulet, Fabien Ritz, Catherine Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ) Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) Scott Polar Research Institute University of Cambridge UK (CAM) 2016 https://insu.hal.science/insu-01388819 https://insu.hal.science/insu-01388819/document https://insu.hal.science/insu-01388819/file/GEOSCIENTIFIC%20MODEL%20DEVELOPMENT%20-%20Performance%20and%20applicability%20of%20a%202.5-D%20ice-flow%20model%20in%20the%20vicinity%20of%20a%20dome.pdf https://doi.org/10.5194/gmd-9-2301-2016 en eng HAL CCSD Copernicus Publ info:eu-repo/semantics/altIdentifier/doi/10.5194/gmd-9-2301-2016 insu-01388819 https://insu.hal.science/insu-01388819 https://insu.hal.science/insu-01388819/document https://insu.hal.science/insu-01388819/file/GEOSCIENTIFIC%20MODEL%20DEVELOPMENT%20-%20Performance%20and%20applicability%20of%20a%202.5-D%20ice-flow%20model%20in%20the%20vicinity%20of%20a%20dome.pdf doi:10.5194/gmd-9-2301-2016 info:eu-repo/semantics/OpenAccess ISSN: 1991-962X Geoscientific Model Development Discussions https://insu.hal.science/insu-01388819 Geoscientific Model Development Discussions, 2016, 9 (7), pp.2301-2313. ⟨10.5194/gmd-9-2301-2016⟩ [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology info:eu-repo/semantics/article Journal articles 2016 ftinsu https://doi.org/10.5194/gmd-9-2301-2016 2024-04-05T00:48:45Z International audience Three-dimensional ice flow modelling requires a large number of computing resources and observation data, such that 2-D simulations are often preferable. However, when there is significant lateral divergence, this must be accounted for (2.5-D models), and a flow tube is considered (volume between two horizontal flowlines). In the absence of velocity observations, this flow tube can be derived assuming that the flowlines follow the steepest slope of the surface, under a few flow assumptions. This method typically consists of scanning a digital elevation model (DEM) with a moving window and computing the curvature at the centre of this window. The ability of the 2.5-D models to account properly for a 3-D state of strain and stress has not clearly been established, nor their sensitivity to the size of the scanning window and to the geometry of the ice surface, for example in the cases of sharp ridges. Here, we study the applicability of a 2.5-D ice flow model around a dome, typical of the East Antarctic plateau conditions. A twin experiment is carried out, comparing 3-D and 2.5-D computed velocities, on three dome geometries, for several scanning windows and thermal conditions. The chosen scanning window used to evaluate the ice surface curvature should be comparable to the typical radius of this curvature. For isothermal ice, the error made by the 2.5-D model is in the range 0–10 % for weakly diverging flows, but is 2 or 3 times higher for highly diverging flows and could lead to a non-physical ice surface at the dome. For non-isothermal ice, assuming a linear temperature profile, the presence of a sharp ridge makes the 2.5-D velocity field unre-alistic. In such cases, the basal ice is warmer and more easily laterally strained than the upper one, the walls of the flow tube are not vertical, and the assumptions of the 2.5-D model are no longer valid. Article in Journal/Newspaper Antarc* Antarctic Institut national des sciences de l'Univers: HAL-INSU Geoscientific Model Development 9 7 2301 2313