Elastoviscoplastic micromechanical modeling of the transient creep of ice

International audience A salient feature of the rheology of isotropic polycrystalline ices is the decrease of the strain rate by more than 2 orders of magnitude during transient creep tests to reach a secondary creep regime at a strain which is systematically of ∼1%. We use a recent (so-called “affi...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research
Main Authors: Castelnau, Olivier, Duval, Paul, Montagnat, Maurine, Brenner, Renald
Other Authors: Propriétés mécaniques et thermodynamiques des matériaux (PMTM), Centre National de la Recherche Scientifique (CNRS), Institute of Geophysics and Planetary Physics San Diego (IGPP), Scripps Institution of Oceanography (SIO - UC San Diego), University of California San Diego (UC San Diego), University of California (UC)-University of California (UC)-University of California San Diego (UC San Diego), University of California (UC)-University of California (UC), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2008
Subjects:
Online Access:https://insu.hal.science/insu-00378329
https://insu.hal.science/insu-00378329/document
https://insu.hal.science/insu-00378329/file/2008JB005751.pdf
https://doi.org/10.1029/2008JB005751
id ftinsu:oai:HAL:insu-00378329v1
record_format openpolar
institution Open Polar
collection Institut national des sciences de l'Univers: HAL-INSU
op_collection_id ftinsu
language English
topic micromechanic
polycrystal
homogenization
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
spellingShingle micromechanic
polycrystal
homogenization
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
Castelnau, Olivier
Duval, Paul
Montagnat, Maurine
Brenner, Renald
Elastoviscoplastic micromechanical modeling of the transient creep of ice
topic_facet micromechanic
polycrystal
homogenization
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
description International audience A salient feature of the rheology of isotropic polycrystalline ices is the decrease of the strain rate by more than 2 orders of magnitude during transient creep tests to reach a secondary creep regime at a strain which is systematically of ∼1%. We use a recent (so-called “affine”) version of the self-consistent mean-field theory to model the elastoviscoplastic behavior of ice. The model aims at bridging scales between the rheology of single grain and the one of polycrystals by evaluating the intergranular interactions. It takes into account the long-term memory effects, which manifests itself by the fact that local stress and strain rate in grains depend on the whole mechanical history of the polycrystal. It is shown that the strong hardening amplitude during the transient creep is entirely explained by the stress redistribution within the specimen, from an almost uniform stress distribution upon instantaneous loading (purely elastic response) to strong interphase and intraphase heterogeneities in the stationary regime (purely viscoplastic response). The experimental hardening kinetic is much too slow to be explained by the same process; it is attributed to the hardening of hard glide slip systems (prismatic slip) in the transient regime. Moreover, the model very well reproduces the permanent creep rate of several highly anisotropic specimens of the Greenland Ice Core Project ice core (pronounced crystallographic textures), when accounting for a single-grain rheology that well matches the experimental one. Our results are consistent with recent findings concerning dislocation dynamics in ice.
author2 Propriétés mécaniques et thermodynamiques des matériaux (PMTM)
Centre National de la Recherche Scientifique (CNRS)
Institute of Geophysics and Planetary Physics San Diego (IGPP)
Scripps Institution of Oceanography (SIO - UC San Diego)
University of California San Diego (UC San Diego)
University of California (UC)-University of California (UC)-University of California San Diego (UC San Diego)
University of California (UC)-University of California (UC)
Laboratoire de glaciologie et géophysique de l'environnement (LGGE)
Observatoire des Sciences de l'Univers de Grenoble (OSUG)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Castelnau, Olivier
Duval, Paul
Montagnat, Maurine
Brenner, Renald
author_facet Castelnau, Olivier
Duval, Paul
Montagnat, Maurine
Brenner, Renald
author_sort Castelnau, Olivier
title Elastoviscoplastic micromechanical modeling of the transient creep of ice
title_short Elastoviscoplastic micromechanical modeling of the transient creep of ice
title_full Elastoviscoplastic micromechanical modeling of the transient creep of ice
title_fullStr Elastoviscoplastic micromechanical modeling of the transient creep of ice
title_full_unstemmed Elastoviscoplastic micromechanical modeling of the transient creep of ice
title_sort elastoviscoplastic micromechanical modeling of the transient creep of ice
publisher HAL CCSD
publishDate 2008
url https://insu.hal.science/insu-00378329
https://insu.hal.science/insu-00378329/document
https://insu.hal.science/insu-00378329/file/2008JB005751.pdf
https://doi.org/10.1029/2008JB005751
genre Greenland
Greenland ice core
Greenland Ice core Project
ice core
genre_facet Greenland
Greenland ice core
Greenland Ice core Project
ice core
op_source ISSN: 2169-9313
EISSN: 2169-9356
Journal of Geophysical Research : Solid Earth
https://insu.hal.science/insu-00378329
Journal of Geophysical Research : Solid Earth, 2008, 113 (B11203), 1 à 14 p. ⟨10.1029/2008JB005751⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1029/2008JB005751
insu-00378329
https://insu.hal.science/insu-00378329
https://insu.hal.science/insu-00378329/document
https://insu.hal.science/insu-00378329/file/2008JB005751.pdf
doi:10.1029/2008JB005751
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1029/2008JB005751
container_title Journal of Geophysical Research
container_volume 113
container_issue B11
_version_ 1797583995845738496
spelling ftinsu:oai:HAL:insu-00378329v1 2024-04-28T08:22:09+00:00 Elastoviscoplastic micromechanical modeling of the transient creep of ice Castelnau, Olivier Duval, Paul Montagnat, Maurine Brenner, Renald Propriétés mécaniques et thermodynamiques des matériaux (PMTM) Centre National de la Recherche Scientifique (CNRS) Institute of Geophysics and Planetary Physics San Diego (IGPP) Scripps Institution of Oceanography (SIO - UC San Diego) University of California San Diego (UC San Diego) University of California (UC)-University of California (UC)-University of California San Diego (UC San Diego) University of California (UC)-University of California (UC) Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) 2008 https://insu.hal.science/insu-00378329 https://insu.hal.science/insu-00378329/document https://insu.hal.science/insu-00378329/file/2008JB005751.pdf https://doi.org/10.1029/2008JB005751 en eng HAL CCSD American Geophysical Union info:eu-repo/semantics/altIdentifier/doi/10.1029/2008JB005751 insu-00378329 https://insu.hal.science/insu-00378329 https://insu.hal.science/insu-00378329/document https://insu.hal.science/insu-00378329/file/2008JB005751.pdf doi:10.1029/2008JB005751 info:eu-repo/semantics/OpenAccess ISSN: 2169-9313 EISSN: 2169-9356 Journal of Geophysical Research : Solid Earth https://insu.hal.science/insu-00378329 Journal of Geophysical Research : Solid Earth, 2008, 113 (B11203), 1 à 14 p. ⟨10.1029/2008JB005751⟩ micromechanic polycrystal homogenization [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology info:eu-repo/semantics/article Journal articles 2008 ftinsu https://doi.org/10.1029/2008JB005751 2024-04-05T00:38:11Z International audience A salient feature of the rheology of isotropic polycrystalline ices is the decrease of the strain rate by more than 2 orders of magnitude during transient creep tests to reach a secondary creep regime at a strain which is systematically of ∼1%. We use a recent (so-called “affine”) version of the self-consistent mean-field theory to model the elastoviscoplastic behavior of ice. The model aims at bridging scales between the rheology of single grain and the one of polycrystals by evaluating the intergranular interactions. It takes into account the long-term memory effects, which manifests itself by the fact that local stress and strain rate in grains depend on the whole mechanical history of the polycrystal. It is shown that the strong hardening amplitude during the transient creep is entirely explained by the stress redistribution within the specimen, from an almost uniform stress distribution upon instantaneous loading (purely elastic response) to strong interphase and intraphase heterogeneities in the stationary regime (purely viscoplastic response). The experimental hardening kinetic is much too slow to be explained by the same process; it is attributed to the hardening of hard glide slip systems (prismatic slip) in the transient regime. Moreover, the model very well reproduces the permanent creep rate of several highly anisotropic specimens of the Greenland Ice Core Project ice core (pronounced crystallographic textures), when accounting for a single-grain rheology that well matches the experimental one. Our results are consistent with recent findings concerning dislocation dynamics in ice. Article in Journal/Newspaper Greenland Greenland ice core Greenland Ice core Project ice core Institut national des sciences de l'Univers: HAL-INSU Journal of Geophysical Research 113 B11