Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years
International audience The Milankovitch theory of climate change proposes that glacial–interglacial cycles are driven by changes in summer insolation at high northern latitudes. The timing of climate change in the Southern Hemisphere at glacial–interglacial transitions (which are known as terminatio...
Published in: | Nature |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Other Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2007
|
Subjects: | |
Online Access: | https://insu.hal.science/insu-00376337 https://doi.org/10.1038/nature06015 |
id |
ftinsu:oai:HAL:insu-00376337v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Institut national des sciences de l'Univers: HAL-INSU |
op_collection_id |
ftinsu |
language |
English |
topic |
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology |
spellingShingle |
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology Kawamura, Kenji Parrenin, Frédéric Lisiecki, Lorraine Uemura, Ryu Vimeux, Françoise P. Severinghaus, Jeffrey A. Hutterli, Manuel Nakazawa, Takakiyo Aoki, Shuji Jouzel, Jean E. Raymo, Maureen Matsumoto, Koji Nakata, Hisakazu Motoyama, Hideaki Fujita, Shuji Goto-Azuma, Kumiko Fujii, Yoshiyuki Watanabe, Okitsugu Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years |
topic_facet |
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology |
description |
International audience The Milankovitch theory of climate change proposes that glacial–interglacial cycles are driven by changes in summer insolation at high northern latitudes. The timing of climate change in the Southern Hemisphere at glacial–interglacial transitions (which are known as terminations) relative to variations in summer insolation in the Northern Hemisphere is an important test of this hypothesis. So far, it has only been possible to apply this test to the most recent termination because the dating uncertainty associated with older terminations is too large to allow phase relationships to be determined. Here we present a new chronology of Antarctic climate change over the past 360,000 years that is based on the ratio of oxygen to nitrogen molecules in air trapped in the Dome Fuji and Vostok ice cores. This ratio is a proxy for local summer insolation5, and thus allows the chronology to be constructed by orbital tuning without the need to assume a lag between a climate record and an orbital parameter. The accuracy of the chronology allows us to examine the phase relationships between climate records from the ice cores and changes in insolation. Our results indicate that orbital-scale Antarctic climate change lags Northern Hemisphere insolation by a few millennia, and that the increases in Antarctic temperature and atmospheric carbon dioxide concentration during the last four terminations occurred within the rising phase of Northern Hemisphere summer insolation. These results support the Milankovitch theory that Northern Hemisphere summer insolation triggered the last four deglaciations |
author2 |
Center for Atmospheric and Oceanic Studies Sendai Tohoku University Sendai National Institute of Polar Research Tokyo (NiPR) Japan Meteorological Agency (JMA) Japan Atomic Energy Agency Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) Department of Earth Sciences Boston Boston University Boston (BU) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Glaces et Continents, Climats et Isotopes Stables (GLACCIOS) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Glaciers et ressources en eau d'altitude - Indicateurs climatiques et environnementaux (GREATICE) Scripps Institution of Oceanography (SIO - UC San Diego) University of California San Diego (UC San Diego) University of California (UC)-University of California (UC) British Antarctic Survey (BAS) Natural Environment Research Council (NERC) |
format |
Article in Journal/Newspaper |
author |
Kawamura, Kenji Parrenin, Frédéric Lisiecki, Lorraine Uemura, Ryu Vimeux, Françoise P. Severinghaus, Jeffrey A. Hutterli, Manuel Nakazawa, Takakiyo Aoki, Shuji Jouzel, Jean E. Raymo, Maureen Matsumoto, Koji Nakata, Hisakazu Motoyama, Hideaki Fujita, Shuji Goto-Azuma, Kumiko Fujii, Yoshiyuki Watanabe, Okitsugu |
author_facet |
Kawamura, Kenji Parrenin, Frédéric Lisiecki, Lorraine Uemura, Ryu Vimeux, Françoise P. Severinghaus, Jeffrey A. Hutterli, Manuel Nakazawa, Takakiyo Aoki, Shuji Jouzel, Jean E. Raymo, Maureen Matsumoto, Koji Nakata, Hisakazu Motoyama, Hideaki Fujita, Shuji Goto-Azuma, Kumiko Fujii, Yoshiyuki Watanabe, Okitsugu |
author_sort |
Kawamura, Kenji |
title |
Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years |
title_short |
Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years |
title_full |
Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years |
title_fullStr |
Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years |
title_full_unstemmed |
Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years |
title_sort |
northern hemisphere forcing of climatic cycles in antarctica over the past 360,000 years |
publisher |
HAL CCSD |
publishDate |
2007 |
url |
https://insu.hal.science/insu-00376337 https://doi.org/10.1038/nature06015 |
genre |
Antarc* Antarctic Antarctica |
genre_facet |
Antarc* Antarctic Antarctica |
op_source |
ISSN: 0028-0836 EISSN: 1476-4687 Nature https://insu.hal.science/insu-00376337 Nature, 2007, 448, pp.912 à 916. ⟨10.1038/nature06015⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1038/nature06015 insu-00376337 https://insu.hal.science/insu-00376337 doi:10.1038/nature06015 |
op_doi |
https://doi.org/10.1038/nature06015 |
container_title |
Nature |
container_volume |
448 |
container_issue |
7156 |
container_start_page |
912 |
op_container_end_page |
916 |
_version_ |
1797588067139190784 |
spelling |
ftinsu:oai:HAL:insu-00376337v1 2024-04-28T07:57:21+00:00 Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years Kawamura, Kenji Parrenin, Frédéric Lisiecki, Lorraine Uemura, Ryu Vimeux, Françoise P. Severinghaus, Jeffrey A. Hutterli, Manuel Nakazawa, Takakiyo Aoki, Shuji Jouzel, Jean E. Raymo, Maureen Matsumoto, Koji Nakata, Hisakazu Motoyama, Hideaki Fujita, Shuji Goto-Azuma, Kumiko Fujii, Yoshiyuki Watanabe, Okitsugu Center for Atmospheric and Oceanic Studies Sendai Tohoku University Sendai National Institute of Polar Research Tokyo (NiPR) Japan Meteorological Agency (JMA) Japan Atomic Energy Agency Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) Department of Earth Sciences Boston Boston University Boston (BU) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Glaces et Continents, Climats et Isotopes Stables (GLACCIOS) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Glaciers et ressources en eau d'altitude - Indicateurs climatiques et environnementaux (GREATICE) Scripps Institution of Oceanography (SIO - UC San Diego) University of California San Diego (UC San Diego) University of California (UC)-University of California (UC) British Antarctic Survey (BAS) Natural Environment Research Council (NERC) 2007 https://insu.hal.science/insu-00376337 https://doi.org/10.1038/nature06015 en eng HAL CCSD Nature Publishing Group info:eu-repo/semantics/altIdentifier/doi/10.1038/nature06015 insu-00376337 https://insu.hal.science/insu-00376337 doi:10.1038/nature06015 ISSN: 0028-0836 EISSN: 1476-4687 Nature https://insu.hal.science/insu-00376337 Nature, 2007, 448, pp.912 à 916. ⟨10.1038/nature06015⟩ [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology info:eu-repo/semantics/article Journal articles 2007 ftinsu https://doi.org/10.1038/nature06015 2024-04-05T00:31:43Z International audience The Milankovitch theory of climate change proposes that glacial–interglacial cycles are driven by changes in summer insolation at high northern latitudes. The timing of climate change in the Southern Hemisphere at glacial–interglacial transitions (which are known as terminations) relative to variations in summer insolation in the Northern Hemisphere is an important test of this hypothesis. So far, it has only been possible to apply this test to the most recent termination because the dating uncertainty associated with older terminations is too large to allow phase relationships to be determined. Here we present a new chronology of Antarctic climate change over the past 360,000 years that is based on the ratio of oxygen to nitrogen molecules in air trapped in the Dome Fuji and Vostok ice cores. This ratio is a proxy for local summer insolation5, and thus allows the chronology to be constructed by orbital tuning without the need to assume a lag between a climate record and an orbital parameter. The accuracy of the chronology allows us to examine the phase relationships between climate records from the ice cores and changes in insolation. Our results indicate that orbital-scale Antarctic climate change lags Northern Hemisphere insolation by a few millennia, and that the increases in Antarctic temperature and atmospheric carbon dioxide concentration during the last four terminations occurred within the rising phase of Northern Hemisphere summer insolation. These results support the Milankovitch theory that Northern Hemisphere summer insolation triggered the last four deglaciations Article in Journal/Newspaper Antarc* Antarctic Antarctica Institut national des sciences de l'Univers: HAL-INSU Nature 448 7156 912 916 |