Ultrahigh-energy neutrino searches using next-generation gravitational wave detectors at radio neutrino detectors: GRAND, IceCube-Gen2 Radio, and RNO-G

International audience Binary neutron star (BNS) mergers can be sources of ultrahigh-energy (UHE) cosmic rays and potential emitters of UHE neutrinos. The upcoming and current radio neutrino detectors like the Giant Radio Array for Neutrino Detection (GRAND), IceCube-Gen2 Radio, and the Radio Neutri...

Full description

Bibliographic Details
Main Authors: Mukhopadhyay, Mainak, Kotera, Kumiko, Wissel, Stephanie, Murase, Kohta, Kimura, Shigeo S
Other Authors: Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Format: Report
Language:English
Published: HAL CCSD 2024
Subjects:
UHE
Online Access:https://hal.science/hal-04650457
id ftinsu:oai:HAL:hal-04650457v1
record_format openpolar
spelling ftinsu:oai:HAL:hal-04650457v1 2024-09-09T19:43:30+00:00 Ultrahigh-energy neutrino searches using next-generation gravitational wave detectors at radio neutrino detectors: GRAND, IceCube-Gen2 Radio, and RNO-G Mukhopadhyay, Mainak Kotera, Kumiko Wissel, Stephanie Murase, Kohta Kimura, Shigeo S Institut d'Astrophysique de Paris (IAP) Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) 2024-07-16 https://hal.science/hal-04650457 en eng HAL CCSD info:eu-repo/semantics/altIdentifier/arxiv/2406.19440 hal-04650457 https://hal.science/hal-04650457 ARXIV: 2406.19440 INSPIRE: 2803112 https://hal.science/hal-04650457 2024 neutrino detector UHE network neutron star binary gravitational radiation detector multimessenger observatory burst stacking gravitational radiation sensitivity trigger Einstein Telescope cosmic radiation [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] [PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] [PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] info:eu-repo/semantics/preprint Preprints, Working Papers, . 2024 ftinsu 2024-07-24T23:44:29Z International audience Binary neutron star (BNS) mergers can be sources of ultrahigh-energy (UHE) cosmic rays and potential emitters of UHE neutrinos. The upcoming and current radio neutrino detectors like the Giant Radio Array for Neutrino Detection (GRAND), IceCube-Gen2 Radio, and the Radio Neutrino Observatory in Greenland (RNO-G) are projected to reach the required sensitivities to search for these neutrinos. In particular, in conjunction with the next-generation of gravitational wave (GW) detectors like Cosmic Explorer (CE) and Einstein Telescope (ET), GW-triggered stacking searches can be performed with the UHE neutrino detectors. In this work, we explore the prospects of such searches by implementing in our analysis an upper distance limit based on the sky-localization capabilities of the GW detectors from which meaningful triggers can be collected. We find that if each GW burst is associated with a total isotropic-equivalent energy of $\sim 10^{50} - 10^{51}$ erg emitted in UHE neutrinos, along with a corresponding beaming fraction of $1$%, GRAND and IceCube-Gen2 Radio have a large probability ($\sim 99$%) to detect a coincident neutrino event using the joint combination of CE+ET in a timescale of less than 15 years of operation for our fiducial choice of parameters. In case of nondetections, the parameter spaces can be constrained at $3\sigma$ level in similar timescales of operation. We also highlight and discuss the prospects of such joint radio neutrino detector network, their importance, and their role in facilitating synergic GW and neutrino observations in the next era of multimessenger astrophysics. Report Greenland Institut national des sciences de l'Univers: HAL-INSU Greenland
institution Open Polar
collection Institut national des sciences de l'Univers: HAL-INSU
op_collection_id ftinsu
language English
topic neutrino
detector
UHE
network
neutron star
binary
gravitational radiation detector
multimessenger
observatory
burst
stacking
gravitational radiation
sensitivity
trigger
Einstein Telescope
cosmic radiation
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]
[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]
spellingShingle neutrino
detector
UHE
network
neutron star
binary
gravitational radiation detector
multimessenger
observatory
burst
stacking
gravitational radiation
sensitivity
trigger
Einstein Telescope
cosmic radiation
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]
[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]
Mukhopadhyay, Mainak
Kotera, Kumiko
Wissel, Stephanie
Murase, Kohta
Kimura, Shigeo S
Ultrahigh-energy neutrino searches using next-generation gravitational wave detectors at radio neutrino detectors: GRAND, IceCube-Gen2 Radio, and RNO-G
topic_facet neutrino
detector
UHE
network
neutron star
binary
gravitational radiation detector
multimessenger
observatory
burst
stacking
gravitational radiation
sensitivity
trigger
Einstein Telescope
cosmic radiation
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]
[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]
description International audience Binary neutron star (BNS) mergers can be sources of ultrahigh-energy (UHE) cosmic rays and potential emitters of UHE neutrinos. The upcoming and current radio neutrino detectors like the Giant Radio Array for Neutrino Detection (GRAND), IceCube-Gen2 Radio, and the Radio Neutrino Observatory in Greenland (RNO-G) are projected to reach the required sensitivities to search for these neutrinos. In particular, in conjunction with the next-generation of gravitational wave (GW) detectors like Cosmic Explorer (CE) and Einstein Telescope (ET), GW-triggered stacking searches can be performed with the UHE neutrino detectors. In this work, we explore the prospects of such searches by implementing in our analysis an upper distance limit based on the sky-localization capabilities of the GW detectors from which meaningful triggers can be collected. We find that if each GW burst is associated with a total isotropic-equivalent energy of $\sim 10^{50} - 10^{51}$ erg emitted in UHE neutrinos, along with a corresponding beaming fraction of $1$%, GRAND and IceCube-Gen2 Radio have a large probability ($\sim 99$%) to detect a coincident neutrino event using the joint combination of CE+ET in a timescale of less than 15 years of operation for our fiducial choice of parameters. In case of nondetections, the parameter spaces can be constrained at $3\sigma$ level in similar timescales of operation. We also highlight and discuss the prospects of such joint radio neutrino detector network, their importance, and their role in facilitating synergic GW and neutrino observations in the next era of multimessenger astrophysics.
author2 Institut d'Astrophysique de Paris (IAP)
Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
format Report
author Mukhopadhyay, Mainak
Kotera, Kumiko
Wissel, Stephanie
Murase, Kohta
Kimura, Shigeo S
author_facet Mukhopadhyay, Mainak
Kotera, Kumiko
Wissel, Stephanie
Murase, Kohta
Kimura, Shigeo S
author_sort Mukhopadhyay, Mainak
title Ultrahigh-energy neutrino searches using next-generation gravitational wave detectors at radio neutrino detectors: GRAND, IceCube-Gen2 Radio, and RNO-G
title_short Ultrahigh-energy neutrino searches using next-generation gravitational wave detectors at radio neutrino detectors: GRAND, IceCube-Gen2 Radio, and RNO-G
title_full Ultrahigh-energy neutrino searches using next-generation gravitational wave detectors at radio neutrino detectors: GRAND, IceCube-Gen2 Radio, and RNO-G
title_fullStr Ultrahigh-energy neutrino searches using next-generation gravitational wave detectors at radio neutrino detectors: GRAND, IceCube-Gen2 Radio, and RNO-G
title_full_unstemmed Ultrahigh-energy neutrino searches using next-generation gravitational wave detectors at radio neutrino detectors: GRAND, IceCube-Gen2 Radio, and RNO-G
title_sort ultrahigh-energy neutrino searches using next-generation gravitational wave detectors at radio neutrino detectors: grand, icecube-gen2 radio, and rno-g
publisher HAL CCSD
publishDate 2024
url https://hal.science/hal-04650457
geographic Greenland
geographic_facet Greenland
genre Greenland
genre_facet Greenland
op_source https://hal.science/hal-04650457
2024
op_relation info:eu-repo/semantics/altIdentifier/arxiv/2406.19440
hal-04650457
https://hal.science/hal-04650457
ARXIV: 2406.19440
INSPIRE: 2803112
_version_ 1809912983554359296