Microbial dynamics in a High Arctic glacier forefield: a combined field, laboratory, and modelling approach

International audience Abstract. Modelling the development of soils in glacier forefields is necessary in order to assess how microbial and geochemical processes interact and shape soil development in response to glacier retreat. Furthermore, such models can help us predict microbial growth and the...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Bradley, James, Arndt, Sandra, Šabacká, Marie, Benning, Liane, Barker, Gary, Blacker, Joshua, Yallop, Marian, Wright, Katherine, Bellas, Christopher, Telling, Jonathan, Tranter, Martyn, Anesio, Alexandre
Other Authors: Institut méditerranéen d'océanologie (MIO), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Mediterranean Institute of Oceanography Marseille, France, Aix Marseille Université (AMU), Queen Mary University of London (QMUL)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2016
Subjects:
Online Access:https://hal.science/hal-04450527
https://hal.science/hal-04450527/document
https://hal.science/hal-04450527/file/bg-13-5677-2016.pdf
https://doi.org/10.5194/bg-13-5677-2016
id ftinsu:oai:HAL:hal-04450527v1
record_format openpolar
spelling ftinsu:oai:HAL:hal-04450527v1 2024-06-23T07:49:59+00:00 Microbial dynamics in a High Arctic glacier forefield: a combined field, laboratory, and modelling approach Bradley, James Arndt, Sandra Šabacká, Marie Benning, Liane Barker, Gary Blacker, Joshua Yallop, Marian Wright, Katherine Bellas, Christopher Telling, Jonathan Tranter, Martyn Anesio, Alexandre Institut méditerranéen d'océanologie (MIO) Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS) Mediterranean Institute of Oceanography Marseille, France Aix Marseille Université (AMU) Queen Mary University of London (QMUL) 2016-10-13 https://hal.science/hal-04450527 https://hal.science/hal-04450527/document https://hal.science/hal-04450527/file/bg-13-5677-2016.pdf https://doi.org/10.5194/bg-13-5677-2016 en eng HAL CCSD European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/bg-13-5677-2016 hal-04450527 https://hal.science/hal-04450527 https://hal.science/hal-04450527/document https://hal.science/hal-04450527/file/bg-13-5677-2016.pdf doi:10.5194/bg-13-5677-2016 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1726-4170 EISSN: 1726-4189 Biogeosciences https://hal.science/hal-04450527 Biogeosciences, 2016, 13 (19), pp.5677-5696. ⟨10.5194/bg-13-5677-2016⟩ [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2016 ftinsu https://doi.org/10.5194/bg-13-5677-2016 2024-06-12T23:55:27Z International audience Abstract. Modelling the development of soils in glacier forefields is necessary in order to assess how microbial and geochemical processes interact and shape soil development in response to glacier retreat. Furthermore, such models can help us predict microbial growth and the fate of Arctic soils in an increasingly ice-free future. Here, for the first time, we combined field sampling with laboratory analyses and numerical modelling to investigate microbial community dynamics in oligotrophic proglacial soils in Svalbard. We measured low bacterial growth rates and growth efficiencies (relative to estimates from Alpine glacier forefields) and high sensitivity of bacterial growth rates to soil temperature (relative to temperate soils). We used these laboratory measurements to inform parameter values in a new numerical model and significantly refined predictions of microbial and biogeochemical dynamics of soil development over a period of roughly 120 years. The model predicted the observed accumulation of autotrophic and heterotrophic biomass. Genomic data indicated that initial microbial communities were dominated by bacteria derived from the glacial environment, whereas older soils hosted a mixed community of autotrophic and heterotrophic bacteria. This finding was simulated by the numerical model, which showed that active microbial communities play key roles in fixing and recycling carbon and nutrients. We also demonstrated the role of allochthonous carbon and microbial necromass in sustaining a pool of organic material, despite high heterotrophic activity in older soils. This combined field, laboratory, and modelling approach demonstrates the value of integrated model–data studies to understand and quantify the functioning of the microbial community in an emerging High Arctic soil ecosystem. Article in Journal/Newspaper Arctic glacier Svalbard Institut national des sciences de l'Univers: HAL-INSU Arctic Svalbard Biogeosciences 13 19 5677 5696
institution Open Polar
collection Institut national des sciences de l'Univers: HAL-INSU
op_collection_id ftinsu
language English
topic [SDE]Environmental Sciences
spellingShingle [SDE]Environmental Sciences
Bradley, James
Arndt, Sandra
Šabacká, Marie
Benning, Liane
Barker, Gary
Blacker, Joshua
Yallop, Marian
Wright, Katherine
Bellas, Christopher
Telling, Jonathan
Tranter, Martyn
Anesio, Alexandre
Microbial dynamics in a High Arctic glacier forefield: a combined field, laboratory, and modelling approach
topic_facet [SDE]Environmental Sciences
description International audience Abstract. Modelling the development of soils in glacier forefields is necessary in order to assess how microbial and geochemical processes interact and shape soil development in response to glacier retreat. Furthermore, such models can help us predict microbial growth and the fate of Arctic soils in an increasingly ice-free future. Here, for the first time, we combined field sampling with laboratory analyses and numerical modelling to investigate microbial community dynamics in oligotrophic proglacial soils in Svalbard. We measured low bacterial growth rates and growth efficiencies (relative to estimates from Alpine glacier forefields) and high sensitivity of bacterial growth rates to soil temperature (relative to temperate soils). We used these laboratory measurements to inform parameter values in a new numerical model and significantly refined predictions of microbial and biogeochemical dynamics of soil development over a period of roughly 120 years. The model predicted the observed accumulation of autotrophic and heterotrophic biomass. Genomic data indicated that initial microbial communities were dominated by bacteria derived from the glacial environment, whereas older soils hosted a mixed community of autotrophic and heterotrophic bacteria. This finding was simulated by the numerical model, which showed that active microbial communities play key roles in fixing and recycling carbon and nutrients. We also demonstrated the role of allochthonous carbon and microbial necromass in sustaining a pool of organic material, despite high heterotrophic activity in older soils. This combined field, laboratory, and modelling approach demonstrates the value of integrated model–data studies to understand and quantify the functioning of the microbial community in an emerging High Arctic soil ecosystem.
author2 Institut méditerranéen d'océanologie (MIO)
Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Mediterranean Institute of Oceanography Marseille, France
Aix Marseille Université (AMU)
Queen Mary University of London (QMUL)
format Article in Journal/Newspaper
author Bradley, James
Arndt, Sandra
Šabacká, Marie
Benning, Liane
Barker, Gary
Blacker, Joshua
Yallop, Marian
Wright, Katherine
Bellas, Christopher
Telling, Jonathan
Tranter, Martyn
Anesio, Alexandre
author_facet Bradley, James
Arndt, Sandra
Šabacká, Marie
Benning, Liane
Barker, Gary
Blacker, Joshua
Yallop, Marian
Wright, Katherine
Bellas, Christopher
Telling, Jonathan
Tranter, Martyn
Anesio, Alexandre
author_sort Bradley, James
title Microbial dynamics in a High Arctic glacier forefield: a combined field, laboratory, and modelling approach
title_short Microbial dynamics in a High Arctic glacier forefield: a combined field, laboratory, and modelling approach
title_full Microbial dynamics in a High Arctic glacier forefield: a combined field, laboratory, and modelling approach
title_fullStr Microbial dynamics in a High Arctic glacier forefield: a combined field, laboratory, and modelling approach
title_full_unstemmed Microbial dynamics in a High Arctic glacier forefield: a combined field, laboratory, and modelling approach
title_sort microbial dynamics in a high arctic glacier forefield: a combined field, laboratory, and modelling approach
publisher HAL CCSD
publishDate 2016
url https://hal.science/hal-04450527
https://hal.science/hal-04450527/document
https://hal.science/hal-04450527/file/bg-13-5677-2016.pdf
https://doi.org/10.5194/bg-13-5677-2016
geographic Arctic
Svalbard
geographic_facet Arctic
Svalbard
genre Arctic
glacier
Svalbard
genre_facet Arctic
glacier
Svalbard
op_source ISSN: 1726-4170
EISSN: 1726-4189
Biogeosciences
https://hal.science/hal-04450527
Biogeosciences, 2016, 13 (19), pp.5677-5696. ⟨10.5194/bg-13-5677-2016⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/bg-13-5677-2016
hal-04450527
https://hal.science/hal-04450527
https://hal.science/hal-04450527/document
https://hal.science/hal-04450527/file/bg-13-5677-2016.pdf
doi:10.5194/bg-13-5677-2016
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/bg-13-5677-2016
container_title Biogeosciences
container_volume 13
container_issue 19
container_start_page 5677
op_container_end_page 5696
_version_ 1802640719977906176