Complex refractive index of volcanic ash aerosol in the infrared, visible, and ultraviolet

International audience Very fine silicate-rich volcanic ash, generated by explosive volcanic eruptions, can efficiently be traced downwind with infrared satellite sounders. Their measurements can also be used to derive physical parameters, such as optical depths and effective radii. However, one of...

Full description

Bibliographic Details
Published in:Applied Optics
Main Authors: Deguine, Alexandre, Petitprez, Denis, Clarisse, Lieven, Guđmundsson, Snævarr, Outes, Valeria, Villarosa, Gustavo, Herbin, Hervé
Other Authors: Physicochimie des Processus de Combustion et de l’Atmosphère - UMR 8522 (PC2A), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Université libre de Bruxelles (ULB), Laboratoire d’Optique Atmosphérique - UMR 8518 (LOA), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), ANR-11-LABX-0005,Cappa,Physiques et Chimie de l'Environnement Atmosphérique(2011)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.science/hal-04247296
https://doi.org/10.1364/AO.59.000884
id ftinsu:oai:HAL:hal-04247296v1
record_format openpolar
spelling ftinsu:oai:HAL:hal-04247296v1 2024-04-28T08:18:15+00:00 Complex refractive index of volcanic ash aerosol in the infrared, visible, and ultraviolet Deguine, Alexandre Petitprez, Denis Clarisse, Lieven Guđmundsson, Snævarr Outes, Valeria Villarosa, Gustavo Herbin, Hervé Physicochimie des Processus de Combustion et de l’Atmosphère - UMR 8522 (PC2A) Université de Lille-Centre National de la Recherche Scientifique (CNRS) Université libre de Bruxelles (ULB) Laboratoire d’Optique Atmosphérique - UMR 8518 (LOA) Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS) ANR-11-LABX-0005,Cappa,Physiques et Chimie de l'Environnement Atmosphérique(2011) 2020 https://hal.science/hal-04247296 https://doi.org/10.1364/AO.59.000884 en eng HAL CCSD Optical Society of America info:eu-repo/semantics/altIdentifier/doi/10.1364/AO.59.000884 hal-04247296 https://hal.science/hal-04247296 doi:10.1364/AO.59.000884 ISSN: 1559-128X EISSN: 2155-3165 Applied optics https://hal.science/hal-04247296 Applied optics, 2020, 59 (4), pp.884. ⟨10.1364/AO.59.000884⟩ [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2020 ftinsu https://doi.org/10.1364/AO.59.000884 2024-04-05T00:28:17Z International audience Very fine silicate-rich volcanic ash, generated by explosive volcanic eruptions, can efficiently be traced downwind with infrared satellite sounders. Their measurements can also be used to derive physical parameters, such as optical depths and effective radii. However, one of the key requirements for accurate retrievals is a good knowledge of the complex refractive index (CRI) of the ash under investigation. In the past, the vast majority of the studies used the CRIs from Pollack et al. [ Icarus 19 , 372 ( 1973 ) ICRSA5 0019-1035 10.1016/0019-1035(73)90115-2 ], which are based on measurements of thin slices of volcanic rock, and therefore are not representative for airborne volcanic ash particles. Here, we report measurements of the CRI of volcanic ash in suspension, generated from samples collected from recent high-impact eruptions in Chile (Puyehue-Cordón Caulle, Calbuco, and Chaitén), Iceland (Eyjafjallajökull and Grímsvötn), and Italy (Etna). The samples cover a wide range of S i O 2 content (46% to 76%) as confirmed by an X-ray fluorescence analysis. In the experimental setup, volcanic ash was suspended in nitrogen through mechanical agitation. Extinction spectra were recorded in the infrared, visible, and ultraviolet spectral regions. The particle size distribution within the airflow was also recorded. An iterative algorithm allowed us to obtain fully consistent CRIs for the six samples, compatible with the observed extinction spectra and the Kramers–Krönig relations. While a good agreement is found with other recently reported CRIs in the UV/Vis, larger differences are found in the longwave infrared spectral region. Article in Journal/Newspaper Eyjafjallajökull Iceland Cris Institut national des sciences de l'Univers: HAL-INSU Applied Optics 59 4 884
institution Open Polar
collection Institut national des sciences de l'Univers: HAL-INSU
op_collection_id ftinsu
language English
topic [SDE]Environmental Sciences
spellingShingle [SDE]Environmental Sciences
Deguine, Alexandre
Petitprez, Denis
Clarisse, Lieven
Guđmundsson, Snævarr
Outes, Valeria
Villarosa, Gustavo
Herbin, Hervé
Complex refractive index of volcanic ash aerosol in the infrared, visible, and ultraviolet
topic_facet [SDE]Environmental Sciences
description International audience Very fine silicate-rich volcanic ash, generated by explosive volcanic eruptions, can efficiently be traced downwind with infrared satellite sounders. Their measurements can also be used to derive physical parameters, such as optical depths and effective radii. However, one of the key requirements for accurate retrievals is a good knowledge of the complex refractive index (CRI) of the ash under investigation. In the past, the vast majority of the studies used the CRIs from Pollack et al. [ Icarus 19 , 372 ( 1973 ) ICRSA5 0019-1035 10.1016/0019-1035(73)90115-2 ], which are based on measurements of thin slices of volcanic rock, and therefore are not representative for airborne volcanic ash particles. Here, we report measurements of the CRI of volcanic ash in suspension, generated from samples collected from recent high-impact eruptions in Chile (Puyehue-Cordón Caulle, Calbuco, and Chaitén), Iceland (Eyjafjallajökull and Grímsvötn), and Italy (Etna). The samples cover a wide range of S i O 2 content (46% to 76%) as confirmed by an X-ray fluorescence analysis. In the experimental setup, volcanic ash was suspended in nitrogen through mechanical agitation. Extinction spectra were recorded in the infrared, visible, and ultraviolet spectral regions. The particle size distribution within the airflow was also recorded. An iterative algorithm allowed us to obtain fully consistent CRIs for the six samples, compatible with the observed extinction spectra and the Kramers–Krönig relations. While a good agreement is found with other recently reported CRIs in the UV/Vis, larger differences are found in the longwave infrared spectral region.
author2 Physicochimie des Processus de Combustion et de l’Atmosphère - UMR 8522 (PC2A)
Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Université libre de Bruxelles (ULB)
Laboratoire d’Optique Atmosphérique - UMR 8518 (LOA)
Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
ANR-11-LABX-0005,Cappa,Physiques et Chimie de l'Environnement Atmosphérique(2011)
format Article in Journal/Newspaper
author Deguine, Alexandre
Petitprez, Denis
Clarisse, Lieven
Guđmundsson, Snævarr
Outes, Valeria
Villarosa, Gustavo
Herbin, Hervé
author_facet Deguine, Alexandre
Petitprez, Denis
Clarisse, Lieven
Guđmundsson, Snævarr
Outes, Valeria
Villarosa, Gustavo
Herbin, Hervé
author_sort Deguine, Alexandre
title Complex refractive index of volcanic ash aerosol in the infrared, visible, and ultraviolet
title_short Complex refractive index of volcanic ash aerosol in the infrared, visible, and ultraviolet
title_full Complex refractive index of volcanic ash aerosol in the infrared, visible, and ultraviolet
title_fullStr Complex refractive index of volcanic ash aerosol in the infrared, visible, and ultraviolet
title_full_unstemmed Complex refractive index of volcanic ash aerosol in the infrared, visible, and ultraviolet
title_sort complex refractive index of volcanic ash aerosol in the infrared, visible, and ultraviolet
publisher HAL CCSD
publishDate 2020
url https://hal.science/hal-04247296
https://doi.org/10.1364/AO.59.000884
genre Eyjafjallajökull
Iceland
Cris
genre_facet Eyjafjallajökull
Iceland
Cris
op_source ISSN: 1559-128X
EISSN: 2155-3165
Applied optics
https://hal.science/hal-04247296
Applied optics, 2020, 59 (4), pp.884. ⟨10.1364/AO.59.000884⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1364/AO.59.000884
hal-04247296
https://hal.science/hal-04247296
doi:10.1364/AO.59.000884
op_doi https://doi.org/10.1364/AO.59.000884
container_title Applied Optics
container_volume 59
container_issue 4
container_start_page 884
_version_ 1797582346892869632