Simulating cross-polar pollution transport during POLARCAT-GRACE

International audience The POLARCAT-GRACE campaign was targeted at aircraft and satellite-remote sensing observations of biomass burning emission transport into the Arctic. During two episodes (2-5 July and 7-10 July) extended smoke plumes originating from large Siberian forest fires were advected d...

Full description

Bibliographic Details
Main Authors: Sodemann, H., Arnold, S., Burkhart, J., Monks, S., Pommier, M., Stohl, A., Turquety, S.
Other Authors: Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Format: Conference Object
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://hal.science/hal-04113733
Description
Summary:International audience The POLARCAT-GRACE campaign was targeted at aircraft and satellite-remote sensing observations of biomass burning emission transport into the Arctic. During two episodes (2-5 July and 7-10 July) extended smoke plumes originating from large Siberian forest fires were advected directly across the North Pole and into the European Arctic. The focus of this work is on the ability of models to correctly simulate cross-polar pollution transport. Close to the pole, depending on the underlying horizontal grid in a model, numerical artifacts can be created, which potentially lead to considerable latitudinal displacements and structural distortion of pollution features. Here we compare transport simulations of total column carbon monoxide (CO) for the FLEXPART model (with and without polar stereographic projection) and the TOMCAT model with retrievals of total column CO from the IASI passive infrared sensor onboard the MetOp-A satellite. The multi-model approach allows to separate the influences of meteorological fields, model realisation, and grid type on the plume structure. First results indicate very good agreement between simulated and observed total column CO fields.