Internal ocean dynamics contribution to North Atlantic interdecadal variability strengthened by ocean-atmosphere thermal coupling

International audience Abstract Identifying the primary drivers of North Atlantic interdecadal climate variability is crucial for improving climatic prediction over the coming decades. Here the effect of thermal coupling on the leading energy sources of the interdecadal variability of the ocean-atmo...

Full description

Bibliographic Details
Published in:Journal of Climate
Main Authors: Arzel, Olivier, Huck, Thierry, Hochet, Antoine, Mussa, Alexandre
Other Authors: Laboratoire d'Océanographie Physique et Spatiale (LOPS), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://hal.science/hal-03860612
https://hal.science/hal-03860612/document
https://hal.science/hal-03860612/file/manuscript_as_revised_20220613.pdf
https://doi.org/10.1175/JCLI-D-22-0191.1
id ftinsu:oai:HAL:hal-03860612v1
record_format openpolar
spelling ftinsu:oai:HAL:hal-03860612v1 2024-04-14T08:15:43+00:00 Internal ocean dynamics contribution to North Atlantic interdecadal variability strengthened by ocean-atmosphere thermal coupling Arzel, Olivier Huck, Thierry Hochet, Antoine Mussa, Alexandre Laboratoire d'Océanographie Physique et Spatiale (LOPS) Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS) 2022-09-09 https://hal.science/hal-03860612 https://hal.science/hal-03860612/document https://hal.science/hal-03860612/file/manuscript_as_revised_20220613.pdf https://doi.org/10.1175/JCLI-D-22-0191.1 en eng HAL CCSD American Meteorological Society info:eu-repo/semantics/altIdentifier/doi/10.1175/JCLI-D-22-0191.1 hal-03860612 https://hal.science/hal-03860612 https://hal.science/hal-03860612/document https://hal.science/hal-03860612/file/manuscript_as_revised_20220613.pdf doi:10.1175/JCLI-D-22-0191.1 info:eu-repo/semantics/OpenAccess ISSN: 0894-8755 EISSN: 1520-0442 Journal of Climate https://hal.science/hal-03860612 Journal of Climate, 2022, pp.1-43. ⟨10.1175/JCLI-D-22-0191.1⟩ [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere info:eu-repo/semantics/article Journal articles 2022 ftinsu https://doi.org/10.1175/JCLI-D-22-0191.1 2024-03-21T17:10:21Z International audience Abstract Identifying the primary drivers of North Atlantic interdecadal climate variability is crucial for improving climatic prediction over the coming decades. Here the effect of thermal coupling on the leading energy sources of the interdecadal variability of the ocean-atmosphere system is examined by means of a stochastically-forced idealized coupled model. The effect of coupling is quantified from a comparison of the buoyancy variance budget of coupled and uncoupled model configurations. The simplicity of the model allows us to contrast the effect of coupling between a super-critical regime where the deterministic ocean dynamics drive the variability and a damped regime where noise forcing is central to its existence. The results show that changes in surface buoyancy fluxes act as a sink of temperature variance in the super-critical regime, and only become a source in the strongly damped regime. By contrast, internal ocean dynamics associated with the interaction of transient buoyancy fluxes with mean buoyancy gradients always act as a source of interdecadal variability. In addition to the reduced thermal damping effect in coupled integrations, thermal coupling with the atmosphere is shown to significantly increase the role of internal ocean dynamics in the variability, in particular in the regime where interdecadal modes are damped. Only for oceanic background states in the strongly damped regime do changes in surface buoyancy fluxes play a leading role in the upper ocean variability. A stochastically-forced coupled box model is proposed that captures the basic effect of thermal coupling on atmospheric and oceanic energy sources of variability. Article in Journal/Newspaper North Atlantic Institut national des sciences de l'Univers: HAL-INSU Journal of Climate 35 24 4605 4624
institution Open Polar
collection Institut national des sciences de l'Univers: HAL-INSU
op_collection_id ftinsu
language English
topic [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
spellingShingle [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
Arzel, Olivier
Huck, Thierry
Hochet, Antoine
Mussa, Alexandre
Internal ocean dynamics contribution to North Atlantic interdecadal variability strengthened by ocean-atmosphere thermal coupling
topic_facet [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
description International audience Abstract Identifying the primary drivers of North Atlantic interdecadal climate variability is crucial for improving climatic prediction over the coming decades. Here the effect of thermal coupling on the leading energy sources of the interdecadal variability of the ocean-atmosphere system is examined by means of a stochastically-forced idealized coupled model. The effect of coupling is quantified from a comparison of the buoyancy variance budget of coupled and uncoupled model configurations. The simplicity of the model allows us to contrast the effect of coupling between a super-critical regime where the deterministic ocean dynamics drive the variability and a damped regime where noise forcing is central to its existence. The results show that changes in surface buoyancy fluxes act as a sink of temperature variance in the super-critical regime, and only become a source in the strongly damped regime. By contrast, internal ocean dynamics associated with the interaction of transient buoyancy fluxes with mean buoyancy gradients always act as a source of interdecadal variability. In addition to the reduced thermal damping effect in coupled integrations, thermal coupling with the atmosphere is shown to significantly increase the role of internal ocean dynamics in the variability, in particular in the regime where interdecadal modes are damped. Only for oceanic background states in the strongly damped regime do changes in surface buoyancy fluxes play a leading role in the upper ocean variability. A stochastically-forced coupled box model is proposed that captures the basic effect of thermal coupling on atmospheric and oceanic energy sources of variability.
author2 Laboratoire d'Océanographie Physique et Spatiale (LOPS)
Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Arzel, Olivier
Huck, Thierry
Hochet, Antoine
Mussa, Alexandre
author_facet Arzel, Olivier
Huck, Thierry
Hochet, Antoine
Mussa, Alexandre
author_sort Arzel, Olivier
title Internal ocean dynamics contribution to North Atlantic interdecadal variability strengthened by ocean-atmosphere thermal coupling
title_short Internal ocean dynamics contribution to North Atlantic interdecadal variability strengthened by ocean-atmosphere thermal coupling
title_full Internal ocean dynamics contribution to North Atlantic interdecadal variability strengthened by ocean-atmosphere thermal coupling
title_fullStr Internal ocean dynamics contribution to North Atlantic interdecadal variability strengthened by ocean-atmosphere thermal coupling
title_full_unstemmed Internal ocean dynamics contribution to North Atlantic interdecadal variability strengthened by ocean-atmosphere thermal coupling
title_sort internal ocean dynamics contribution to north atlantic interdecadal variability strengthened by ocean-atmosphere thermal coupling
publisher HAL CCSD
publishDate 2022
url https://hal.science/hal-03860612
https://hal.science/hal-03860612/document
https://hal.science/hal-03860612/file/manuscript_as_revised_20220613.pdf
https://doi.org/10.1175/JCLI-D-22-0191.1
genre North Atlantic
genre_facet North Atlantic
op_source ISSN: 0894-8755
EISSN: 1520-0442
Journal of Climate
https://hal.science/hal-03860612
Journal of Climate, 2022, pp.1-43. ⟨10.1175/JCLI-D-22-0191.1⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1175/JCLI-D-22-0191.1
hal-03860612
https://hal.science/hal-03860612
https://hal.science/hal-03860612/document
https://hal.science/hal-03860612/file/manuscript_as_revised_20220613.pdf
doi:10.1175/JCLI-D-22-0191.1
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1175/JCLI-D-22-0191.1
container_title Journal of Climate
container_volume 35
container_issue 24
container_start_page 4605
op_container_end_page 4624
_version_ 1796314138476019712