Sulfur-isotope anomalies recorded in Antarctic ice cores as a potential proxy for tracing past ozone layer depletion events
International audience Abstract Changes in the cosmic-ray background of the Earth can impact the ozone layer. High-energy cosmic events (e.g., Supernova, SN) or rapid changes in the Earth's magnetic field (e.g., Geomagnetic Excursion, GE) can lead to a cascade of cosmic rays. Ensuing chemical r...
Published in: | PNAS Nexus |
---|---|
Main Authors: | , , , |
Other Authors: | , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2022
|
Subjects: | |
Online Access: | https://hal.science/hal-03775537 https://hal.science/hal-03775537/document https://hal.science/hal-03775537/file/pgac170.pdf https://doi.org/10.1093/pnasnexus/pgac170 |
id |
ftinsu:oai:HAL:hal-03775537v1 |
---|---|
record_format |
openpolar |
spelling |
ftinsu:oai:HAL:hal-03775537v1 2023-06-18T03:38:11+02:00 Sulfur-isotope anomalies recorded in Antarctic ice cores as a potential proxy for tracing past ozone layer depletion events Dasari, Sanjeev Paris, Guillaume Charreau, Julien Savarino, Joel Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) Centre de Recherches Pétrographiques et Géochimiques (CRPG) Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) This study was supported by the Marie Skłodowska-Curie Action Grant number 1010180 2022-08-30 https://hal.science/hal-03775537 https://hal.science/hal-03775537/document https://hal.science/hal-03775537/file/pgac170.pdf https://doi.org/10.1093/pnasnexus/pgac170 en eng HAL CCSD Oxford University Press info:eu-repo/semantics/altIdentifier/doi/10.1093/pnasnexus/pgac170 hal-03775537 https://hal.science/hal-03775537 https://hal.science/hal-03775537/document https://hal.science/hal-03775537/file/pgac170.pdf doi:10.1093/pnasnexus/pgac170 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 2752-6542 PNAS Nexus https://hal.science/hal-03775537 PNAS Nexus, 2022, ⟨10.1093/pnasnexus/pgac170⟩ Major Category: Physical Sciences Minor Category: Earth Atmospheric and Planetary Sciences Cosmic-ray background UV Radiation Sulfur Mass-Independent Fractionation (S-MIF) Δ 33 S [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere [SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry info:eu-repo/semantics/article Journal articles 2022 ftinsu https://doi.org/10.1093/pnasnexus/pgac170 2023-06-05T20:09:10Z International audience Abstract Changes in the cosmic-ray background of the Earth can impact the ozone layer. High-energy cosmic events (e.g., Supernova, SN) or rapid changes in the Earth's magnetic field (e.g., Geomagnetic Excursion, GE) can lead to a cascade of cosmic rays. Ensuing chemical reactions can then cause thinning/destruction of the ozone layer — leading to enhanced penetration of harmful UV radiation towards the Earth's surface. However, observational evidence for such UV ‘windows’ is still lacking. Here, we conduct a pilot study and investigate this notion during two well-known events: the multiple SN event (≈10 kBP) and the Laschamp GE event (≈41 kBP). We hypothesize that ice-core-Δ33S records—originally used as volcanic fingerprints—can reveal UV-induced background-tropospheric- photochemical imprints during such events. Indeed, we find non-volcanic S-isotopic anomalies (Δ33S≠0 ‰) in background Antarctic-ice-core sulfate during GE/SN periods, thereby confirming our hypothesis. This suggests that ice-core-Δ33S records can serve as a proxy for past ozone-layer-depletion events. Article in Journal/Newspaper Antarc* Antarctic ice core Institut national des sciences de l'Univers: HAL-INSU Antarctic PNAS Nexus 1 4 |
institution |
Open Polar |
collection |
Institut national des sciences de l'Univers: HAL-INSU |
op_collection_id |
ftinsu |
language |
English |
topic |
Major Category: Physical Sciences Minor Category: Earth Atmospheric and Planetary Sciences Cosmic-ray background UV Radiation Sulfur Mass-Independent Fractionation (S-MIF) Δ 33 S [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere [SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry |
spellingShingle |
Major Category: Physical Sciences Minor Category: Earth Atmospheric and Planetary Sciences Cosmic-ray background UV Radiation Sulfur Mass-Independent Fractionation (S-MIF) Δ 33 S [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere [SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry Dasari, Sanjeev Paris, Guillaume Charreau, Julien Savarino, Joel Sulfur-isotope anomalies recorded in Antarctic ice cores as a potential proxy for tracing past ozone layer depletion events |
topic_facet |
Major Category: Physical Sciences Minor Category: Earth Atmospheric and Planetary Sciences Cosmic-ray background UV Radiation Sulfur Mass-Independent Fractionation (S-MIF) Δ 33 S [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere [SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry |
description |
International audience Abstract Changes in the cosmic-ray background of the Earth can impact the ozone layer. High-energy cosmic events (e.g., Supernova, SN) or rapid changes in the Earth's magnetic field (e.g., Geomagnetic Excursion, GE) can lead to a cascade of cosmic rays. Ensuing chemical reactions can then cause thinning/destruction of the ozone layer — leading to enhanced penetration of harmful UV radiation towards the Earth's surface. However, observational evidence for such UV ‘windows’ is still lacking. Here, we conduct a pilot study and investigate this notion during two well-known events: the multiple SN event (≈10 kBP) and the Laschamp GE event (≈41 kBP). We hypothesize that ice-core-Δ33S records—originally used as volcanic fingerprints—can reveal UV-induced background-tropospheric- photochemical imprints during such events. Indeed, we find non-volcanic S-isotopic anomalies (Δ33S≠0 ‰) in background Antarctic-ice-core sulfate during GE/SN periods, thereby confirming our hypothesis. This suggests that ice-core-Δ33S records can serve as a proxy for past ozone-layer-depletion events. |
author2 |
Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) Centre de Recherches Pétrographiques et Géochimiques (CRPG) Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) This study was supported by the Marie Skłodowska-Curie Action Grant number 1010180 |
format |
Article in Journal/Newspaper |
author |
Dasari, Sanjeev Paris, Guillaume Charreau, Julien Savarino, Joel |
author_facet |
Dasari, Sanjeev Paris, Guillaume Charreau, Julien Savarino, Joel |
author_sort |
Dasari, Sanjeev |
title |
Sulfur-isotope anomalies recorded in Antarctic ice cores as a potential proxy for tracing past ozone layer depletion events |
title_short |
Sulfur-isotope anomalies recorded in Antarctic ice cores as a potential proxy for tracing past ozone layer depletion events |
title_full |
Sulfur-isotope anomalies recorded in Antarctic ice cores as a potential proxy for tracing past ozone layer depletion events |
title_fullStr |
Sulfur-isotope anomalies recorded in Antarctic ice cores as a potential proxy for tracing past ozone layer depletion events |
title_full_unstemmed |
Sulfur-isotope anomalies recorded in Antarctic ice cores as a potential proxy for tracing past ozone layer depletion events |
title_sort |
sulfur-isotope anomalies recorded in antarctic ice cores as a potential proxy for tracing past ozone layer depletion events |
publisher |
HAL CCSD |
publishDate |
2022 |
url |
https://hal.science/hal-03775537 https://hal.science/hal-03775537/document https://hal.science/hal-03775537/file/pgac170.pdf https://doi.org/10.1093/pnasnexus/pgac170 |
geographic |
Antarctic |
geographic_facet |
Antarctic |
genre |
Antarc* Antarctic ice core |
genre_facet |
Antarc* Antarctic ice core |
op_source |
ISSN: 2752-6542 PNAS Nexus https://hal.science/hal-03775537 PNAS Nexus, 2022, ⟨10.1093/pnasnexus/pgac170⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1093/pnasnexus/pgac170 hal-03775537 https://hal.science/hal-03775537 https://hal.science/hal-03775537/document https://hal.science/hal-03775537/file/pgac170.pdf doi:10.1093/pnasnexus/pgac170 |
op_rights |
http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1093/pnasnexus/pgac170 |
container_title |
PNAS Nexus |
container_volume |
1 |
container_issue |
4 |
_version_ |
1769003064789827584 |